Kilohertz frame rate two-photon and confocal fluorescence microscope enabled by r
r 支持的千赫兹帧速率双光子和共焦荧光显微镜
基本信息
- 批准号:9091593
- 负责人:
- 金额:$ 18.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAlgorithmic SoftwareAreaBenchmarkingBiochemicalBiochemical ProcessBiologicalBiological ProcessBiologyBrainCalciumCalcium OscillationsCardiacCellsChargeComb animal structureCommunicationCoupledCustomDataDevelopmentDevicesElectronicsElectronsElementsEventFire - disastersFluorescenceFluorescence MicroscopyFluorescent ProbesGoalsHealthHeartImageImaging DeviceImaging technologyIn VitroLasersLateralLifeMeasuresMicroscopeMicroscopyMusNeuronsNeurosciencesNoiseOpticsOutputPerformancePhotonsProteinsResearchResolutionSamplingScanningScienceSpeedSystemTechniquesTechnologyTimeTissuesTitaniaTitaniumTubeUrethaneValidationWorkawakebasecalcium indicatorcellular imagingdesign and constructiondetectordigitalfluorescence imagingfluorescence microscopeimprovedin vivoinsightinstrumentationmillisecondoperationpatch clampphotomultiplierphotonicsprototyperadio frequencyradiofrequencyresearch studysapphire lasertemporal measurementtwo-photonvoltage
项目摘要
DESCRIPTION (provided by applicant): The millisecond timescales inherent to action potentials in neurons, calcium waves in cardiac tissue, and conformational changes in proteins demand imaging instrumentation with sub-millisecond time resolution for their study. The ability to resolve the fastest biological processes over a large field of view will enable new directions i research and a better understanding of many electro-biochemical and biochemical processes. Thanks to fluorescent probes, many of these events are observable using optical microscopy. However, their weak fluorescent emission requires that imaging devices use long integration times to collect enough photons to generate images with high SNR, which result in low image acquisition speed. Technologies such as the electron-multiplier charge coupled device (EMCCD) offer electronic gain to compensate for the small number of photons detected during a shorter integration time, but the serial pixel readout strategy ultimately limits the full-frame (512x512 pixels) rate to less than 100 Hz. Photomultiplier tubes (PMTs) offer high gain and high- speed readout, but are typically manufactured in single element detector formats. For these reasons, fluorescence microscopy has been unable to resolve millisecond transients with full field, diffraction-limited spatial resolution. The goal of this proposal is to develop fluorescence microscopy instrumentation for high-speed imaging applications in biology. The introduction of a confocal fluorescence microscope capable of kilohertz frame rates with sufficient sensitivity and resolution to resolve the millisecond-timescale dynamics in living cells
and tissues will enable new discoveries in all areas of biology. To accomplish this goal, we propose to employ techniques from the field of radiofrequency (RF) communications to multiplex the fluorescence excitation and emission of samples such that many pixels can be imaged simultaneously using a single PMT. We have deemed this technology Fluorescence Imaging using Radiofrequency-multiplexed Excitation, or FIRE. While this technology should find application in all areas of biology, we envision this system to make the most impact by enabling new science and aiding the development of insight into the operation of the brain and heart, where fluorescence-based calcium and voltage imaging speed are at a premium (e.g, action potential = 1 ms).In the first year, we will further develop our prototype, in order to improve bot the temporal and spatial resolutions. Our preliminary data from experiments imaging fixed adherent cells using one-photon excitation demonstrates the feasibility of this technique, and we will extend these experiments to live cell calcium imaging. In the second year, we will extend the high-speed one-photon imaging concept to two-photon excitation fluorescence imaging, using calcium imaging of neuronal network activity as proof-of-principle. During the third year, we will demonstrate the FIRE's advances by demonstrating its utility in imaging neuronal activity in the brain of urethane-anesthetized mice with unprecedented time resolution.
描述(由申请人提供):神经元动作电位、心脏组织中的钙波以及蛋白质构象变化固有的毫秒时间尺度需要具有亚毫秒时间分辨率的成像仪器来进行研究。在大视野范围内解析最快的生物过程的能力将为我的研究带来新的方向,并更好地理解许多电生化和生化过程。借助荧光探针,许多这些事件都可以使用光学显微镜观察到。然而,它们的荧光发射较弱,要求成像设备使用较长的积分时间来收集足够的光子以生成高信噪比的图像,从而导致图像采集速度较低。电子倍增器电荷耦合器件 (EMCCD) 等技术提供电子增益,以补偿在较短积分时间内检测到的少量光子,但串行像素读出策略最终将全帧(512x512 像素)速率限制为更低超过 100 赫兹。光电倍增管 (PMT) 提供高增益和高速读出,但通常以单元件检测器形式制造。由于这些原因,荧光显微镜无法以全场、衍射限制的空间分辨率解析毫秒瞬态。该提案的目标是开发用于生物学高速成像应用的荧光显微镜仪器。推出具有千赫兹帧速率的共焦荧光显微镜,具有足够的灵敏度和分辨率来解析活细胞中的毫秒时间尺度动态
和组织将使生物学所有领域的新发现成为可能。为了实现这一目标,我们建议采用射频 (RF) 通信领域的技术来复用样品的荧光激发和发射,以便可以使用单个 PMT 同时对许多像素进行成像。我们认为这项技术是使用射频复用激发(FIRE)的荧光成像技术。虽然这项技术应该在生物学的所有领域得到应用,但我们预计该系统将通过支持新科学并帮助深入了解大脑和心脏的运作而产生最大的影响,其中基于荧光的钙和电压成像速度溢价(例如,动作电位 = 1 毫秒)。在第一年,我们将进一步开发我们的原型,以提高机器人的时间和空间分辨率。我们使用单光子激发对固定贴壁细胞进行成像的实验的初步数据证明了该技术的可行性,并且我们将这些实验扩展到活细胞钙成像。第二年,我们将利用神经网络活动的钙成像作为原理验证,将高速单光子成像概念扩展到双光子激发荧光成像。在第三年,我们将通过展示 FIRE 在以前所未有的时间分辨率对聚氨酯麻醉小鼠大脑中的神经元活动进行成像方面的实用性来展示 FIRE 的进步。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feature Enhancement in Visually Impaired Images.
视障图像的特征增强。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Suthar, Madhuri;Asghari, Hossein;Jalali, Bahram
- 通讯作者:Jalali, Bahram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bahram Jalali其他文献
Bahram Jalali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bahram Jalali', 18)}}的其他基金
Kilohertz frame rate two-photon and confocal fluorescence microscope enabled by r
r 支持的千赫兹帧速率双光子和共焦荧光显微镜
- 批准号:
8900318 - 财政年份:2014
- 资助金额:
$ 18.45万 - 项目类别:
Kilohertz frame rate two-photon and confocal fluorescence microscope enabled by r
r 支持的千赫兹帧速率双光子和共焦荧光显微镜
- 批准号:
8758721 - 财政年份:2014
- 资助金额:
$ 18.45万 - 项目类别:
相似国自然基金
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
凸复合二次锥优化问题的算法及软件研究
- 批准号:12271015
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Development and evaluation of a combined X-ray transmission and diffraction imaging system for pathology
用于病理学的组合 X 射线透射和衍射成像系统的开发和评估
- 批准号:
10699271 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Development and evaluation of a combined X-ray transmission and diffraction imaging system for pathology
用于病理学的组合 X 射线透射和衍射成像系统的开发和评估
- 批准号:
10699271 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别: