The Influence of Cysteinate Protonation in Nickel Containing Metalloenzymes
半胱氨酸质子化对含镍金属酶的影响
基本信息
- 批准号:9170625
- 负责人:
- 金额:$ 22.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAmino AcidsBiochemicalBiochemical ProcessBiochemical ReactionBioinorganic ChemistryChemistryCleaved cellComputational TechniqueCoupledDockingElectron TransportElectronsElementsEnvironmentEnzymesGeometryHealthHelicobacter pyloriHumanHydrogen BondingHydrogen PeroxideInvestigationIronLeadLengthLigandsMetalsMicrobeModelingNatureNickelOpticsProcessPropertyProtonsPsychological TechniquesReactionResearchResourcesRoentgen RaysRunningSeriesSiteSpectrum AnalysisStructureSuperoxide DismutaseSystemThermodynamicsUrsidae FamilyWorkabsorptionabstractinganalogbasecomputer studieselectronic structuregeometric structurehuman diseaseinsightinterestmetalloenzymenickel-iron hydrogenasenovel therapeutic interventionoxidationpathogenpathogenic bacteriaphysical propertyprotonationsmall moleculetool
项目摘要
Project Summary. Cysteinate ligated nickel metalloenzymes are found in a number of pathogenic bacteria.
Some of these nickel containing metalloenzymes, such as nickel-iron hydrogenase ([NiFe]H2ase) found in
Helicobacter pylori, are found in microbes responsible for human diseases. At least two nickel containing
metalloenzymes, nickel containing superoxide dismutase (NiSOD) and [NiFe]H2ase, possess a coordinated
protonated cysteinate residue (Ni-S(H+)-Cys). We suspect that the Ni-S(H+)-Cys bond is involved in the
enzymatic mechanism and also modulates the electronic structure and reactivity of these metalloenzymes.
Our research will take advantage of functional metalloenzyme based mimics of NiSOD and small molecule
mimics of [NiFe]H2ase. Metallopeptide based mimics of NiSOD that my group has prepared to date reproduce
the structure and physical properties of the metalloenzyme. These metallopeptides are also catalytically active,
effecting O2– disproportionation with rate constants approaching those observed in the metalloenzyme. Recent
work by my group has demonstrated that these mimics facilitate O2– reduction to H2O2 via a unique proton
coupled electron transfer (PCET) reaction from a Ni-S(H+)-Cys moiety to O –. We will probe this reaction by
2
preparing derivatives of these metallopeptides that will alter the fundamental nature of the PCET reaction. This
will yield insight into the general scope of PCET reactions facilitated by such moieties. In addition, we will
prepare metallopeptide based NiSOD mimics that more accurately replicate the enzymatic reaction
mechanism. Preliminary work demonstrates that the mechanism of O2– reduction effected by the
metallopeptide is distinct from NiSOD itself. By producing mimics that reproduce enzymatic reactivity we will
gain a better understanding of the mechanism of O2– disproportionation effected by NiSOD itself. Also, we will
investigate the influence of the Ni-S(H+)-Cys moiety on [NiFe]H2ase model compounds. We propose that the
protonation of the coordinated cysteinate ligand is dramatically altering the electronic structure of the Ni-center
in [NiFe]-H2ase; specifically it is reducing the hydricity of the mechanistically important Ni(III)-H intermediate
biasing [NiFe]H2ase to perform H2 oxidation chemistry. This supposition will also be probed under this initiative.
This research runs the gamut of tools utilized in bioinorganic chemistry. As with many of our studies synthetic,
biochemical, spectroscopic, mechanistic, and computational studies will be brought to bear on understanding
all aspects of the metallopeptides and small molecule mimics. The use of metalloenzyme mimics in our
investigations is especially noteworthy; few studies have been performed where insight into specific
biochemical processes are revealed through metallopeptide based metalloenzyme mimics. Therefore
completion of this project will not only reveal interesting aspects of biologically important Ni-S(H+)-Cys
moieties, but will also push the limits of investigations concerning metallopeptide based metalloenzyme
mimics.
项目摘要在许多病原菌中发现了半胱氨酸连接的镍金属酶。
其中一些含镍金属酶,例如镍铁氢化酶([NiFe]H2ase)
幽门螺杆菌是导致人类疾病的微生物中至少含有两种镍。
金属酶、含镍超氧化物歧化酶 (NiSOD) 和 [NiFe]H2ase 具有协调性
我们怀疑 Ni-S(H+)-Cys 键参与了质子化的半胱氨酸残基 (Ni-S(H+)-Cys)。
酶机制,还调节这些金属酶的电子结构和反应性。
我们的研究将利用基于 NiSOD 和小分子的功能性金属酶模拟物
我的小组迄今为止已准备复制基于金属肽的 NiSOD 模拟物。
这些金属酶的结构和物理性质也具有催化活性,
影响 O2- 歧化的速率常数接近最近在金属酶中观察到的速率常数。
我的团队的工作表明,这些模拟物通过独特的质子促进 O2- 还原为 H2O2
从 Ni-S(H+)-Cys 部分到 O – 的耦合电子转移 (PCET) 反应我们将通过以下方式探究该反应。
2
制备这些金属肽的衍生物将改变 PCET 反应的基本性质。
将深入了解这些部分促进的 PCET 反应的一般范围。
制备基于金属肽的 NiSOD 模拟物,可以更准确地复制酶反应
初步工作表明O2-还原的机制是受O2-还原影响的。
金属肽与 NiSOD 本身不同,通过生产可重现酶反应性的模拟物,我们将能够实现这一点。
更好地了解 NiSOD 本身影响的 O2-歧化机制。
研究 Ni-S(H+)-Cys 部分对 [NiFe]H2ase 模型化合物的影响。
配位半胱氨酸配体的质子化极大地改变了镍中心的电子结构
在 [NiFe]-H2ase 中,它会降低机械上重要的 Ni(III)-H 中间体的水度
偏压 [NiFe]H2ase 进行 H2 氧化化学也将在该倡议下进行探讨。
与我们的许多合成研究一样,这项研究涵盖了生物无机化学中使用的所有工具。
生物化学、光谱、机械和计算研究将有助于理解
金属肽和小分子模拟物的各个方面在我们的应用中。
很少有研究深入了解具体情况;
通过基于金属肽的金属酶模拟物揭示生化过程。
该项目的完成不仅将揭示具有重要生物学意义的 Ni-S(H+)-Cys 的有趣方面
部分,但也将突破基于金属酶的金属肽研究的极限
模仿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason M Shearer其他文献
Jason M Shearer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason M Shearer', 18)}}的其他基金
Metallopeptide Based Mimics of Mononuclear Nonheme Iron Enzymes: Understanding Enzymatic Reactivity Using Designed Metallopeptides
基于金属肽的单核非血红素铁酶模拟物:使用设计的金属肽了解酶反应性
- 批准号:
10201144 - 财政年份:2021
- 资助金额:
$ 22.16万 - 项目类别:
Metallopeptide Based Mimics of Mononuclear Nonheme Iron Enzymes: Understanding Enzymatic Reactivity Using Designed Metallopeptides
基于金属肽的单核非血红素铁酶模拟物:使用设计的金属肽了解酶反应性
- 批准号:
10797337 - 财政年份:2021
- 资助金额:
$ 22.16万 - 项目类别:
Change of Institution: The Influence of Cysteinate Protonation in Nickel Containing Metalloenzymes
制度变迁:半胱氨酸质子化对含镍金属酶的影响
- 批准号:
9825169 - 财政年份:2016
- 资助金额:
$ 22.16万 - 项目类别:
PROBING THE INFLUENCE OF ARGININE METHYLATION ON THE MODULATION OF BIOMOLECULAR
探讨精氨酸甲基化对生物分子调节的影响
- 批准号:
8360611 - 财政年份:2011
- 资助金额:
$ 22.16万 - 项目类别:
PROBING THE INFLUENCE OF ARGININE METHYLATION ON THE MODULATION OF BIOMOLECULAR
探讨精氨酸甲基化对生物分子调节的影响
- 批准号:
8168233 - 财政年份:2010
- 资助金额:
$ 22.16万 - 项目类别:
PROBING THE INFLUENCE OF ARGININE METHYLATION ON THE MODULATION OF BIOMOLECULAR
探讨精氨酸甲基化对生物分子调节的影响
- 批准号:
7959721 - 财政年份:2009
- 资助金额:
$ 22.16万 - 项目类别:
Substrate Modification at Redox Active Copper Centers
氧化还原活性铜中心的基材改性
- 批准号:
6709365 - 财政年份:2003
- 资助金额:
$ 22.16万 - 项目类别:
Substrate Modification at Redox Active Copper Centers
氧化还原活性铜中心的基材改性
- 批准号:
6585096 - 财政年份:2003
- 资助金额:
$ 22.16万 - 项目类别:
相似国自然基金
芳香族氨基酸摄入变化引起桃蚜体色变化的生化和分子调控机制
- 批准号:32102201
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
含硫氨基酸代谢关键酶CBS的活性调控生化分子基础和新型激活剂研究
- 批准号:31870763
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于脂肪酸、氨基酸和溶血磷脂酰胆碱代谢网络分析的中药肝毒性评价及作用机制研究
- 批准号:81660692
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
氨基酸衍生化法提高抗BVDV活性成分黄芩苷生物利用度的研究
- 批准号:31502109
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
通过氨基酸衍生化提高抗肿瘤活性成分薯蓣皂苷元生物利用度的研究
- 批准号:31100250
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enzymology of Bacteroides short and branched chain fatty acid metabolism
拟杆菌短链和支链脂肪酸代谢的酶学
- 批准号:
10651505 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
A Generalizable Photo-Crosslinking Strategy to Identify Tyrosine Phosphatase Substrates
识别酪氨酸磷酸酶底物的通用光交联策略
- 批准号:
10612641 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Recognition of Synthetic Unnatural Base Pairs by RNA Polymerase
RNA 聚合酶对合成非天然碱基对的识别
- 批准号:
10561543 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Structure function investigations of radical transfer and disulfide exchange in a class Ia ribonucleotide reductase
Ia类核糖核苷酸还原酶自由基转移和二硫键交换的结构功能研究
- 批准号:
10542661 - 财政年份:2022
- 资助金额:
$ 22.16万 - 项目类别: