Studying Interface Behavior of Blood and Degradable Magnesium Stent
研究血液与可降解镁支架的界面行为
基本信息
- 批准号:9052782
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-15 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAlloysAnticoagulant therapyArteriesAtherosclerosisBehaviorBiocompatible MaterialsBiological ModelsBloodBlood PlateletsBlood VolumeBlood flowBody FluidsBone DensityCardiovascular systemChromiumChronicClinicalCommunitiesCoronaryCoronary StenosisCoronary arteryCorrosionDataDepositionDevelopmentDevicesDrug usageEmbolismEmbolism and ThrombosisEngineeringEnvironmentFreedomGoalsHealthHeart DiseasesHemorrhageHumanImageImplantIn VitroInflammationInterventionIonsKnowledgeLesionLiquid substanceMagnesiumMagnetic ResonanceMagnetic Resonance ImagingMeasurementMeasuresMechanicsMedical DeviceMetalsMethodsMicrofluidic MicrochipsMicrofluidicsMonitorMorphologyMyocardial InfarctionObstructionOperative Surgical ProceduresParticulatePhysiologicalPlasmaPositioning AttributeProceduresProcessPumpRepeat SurgeryResearchRiskScienceSideSiteStainless SteelStentsStructureSurfaceSystemTechnologyTestingThromboembolismThrombosisTissuesTubular formationWhole BloodX-Ray Computed Tomographybasebiomaterial compatibilitycarcinogenicitydensitydesignendothelial dysfunctionimplantationimprovedin vivoirritationmedical implantnext generationoperationpercutaneous coronary interventionpreclinical studyresponserestenosisrestorationshear stresssimulationstent thrombosissuccesstitanium nickelidetoxic metaltreatment strategyvasomotion
项目摘要
DESCRIPTION (provided by applicant): Atherosclerosis is the most common type of heart disease and a common cause of heart attacks. Atherosclerosis is caused by plaque deposition along the inner walls of the arteries of the heart, which narrows the arteries and restricts blood flow. Stents can be inserted into arteries to keep them open. However, risks associated with these permanent metal structures include restenosis because of long-term endothelial dysfunction, late thrombosis, permanent physical irritation, toxic metal ion release, thromboembolism, and local chronic inflammation. We will investigate the use of biodegradable metals (magnesium alloys) in stents. These alloys can provide temporary mechanical integration for the first few months and then be slowly absorbed into the body. Such stents can reduce late stent thrombosis, improved lesion imaging with computed tomography or magnetic resonance (the density of magnesium is similar with the density of bone), facilitation of repeat treatments (either surgical or percutaneous) to the same site, restoration of vasomotion and freedom from side-branch obstruction by struts. However, development of these potentially important devices is hampered by the lack of detailed information concerning the interaction between the degrading metal surface and the surrounding blood and tissue. This proposal is to study biodegradable magnesium-based stents for the next generation of stenting technology. A properly engineered microfluidic device can simultaneously assess thrombogenic potential on a degrading magnesium surface over the range of physiological shear stresses using only a small volume of blood. In vitro studies will provide new knowledge on the effects of blood on magnesium stents for clinical success of stents. The specific aims of the proposed studies follow; (1) to compare the surface degradation behavior of magnesium-based and stainless steel - we will test the hypothesis that varying shear stress in microfluidic chips will mimic in vivo physiological flow conditions and allow consistent quantitative measurement of magnesium degradation, (2) to compare physiological response to magnesium and stainless steel in the model system - the hypothesis that new knowledge of correlation between platelet deposition and the corrosion of magnesium alloys will provide quantitative value for thrombogenic potential, (3) to assess embolism potential of biodegradable magnesium - we will test the hypothesis that magnesium degradation products are soluble, rather than particulate, and unlikely to pose an embolism risk. This application, which leverages Dr. Yeoheung Yun's expertise in biomaterial science, will initiate a major shift in stent design and use, and open up new strategies for the treatment of atherosclerosis.
描述(由申请人提供):动脉粥样硬化是最常见的心脏病类型,也是心脏病发作的常见原因。动脉粥样硬化是由心脏动脉内壁的斑块沉积引起的,它会导致动脉变窄并限制血液流动。支架可以插入动脉以保持动脉畅通,但是,与这些永久性金属结构相关的风险包括由于长期内皮功能障碍、晚期血栓形成、永久性身体刺激、有毒金属离子而导致的再狭窄。我们将研究在支架中使用可生物降解的金属(镁合金),这些合金可以在最初的几个月内提供暂时的机械整合,然后慢慢地被人体吸收。支架血栓形成、通过计算机断层扫描或磁共振改善病变成像(镁的密度与骨的密度相似)、促进同一部位的重复治疗(手术或经皮)、恢复然而,由于缺乏有关降解金属表面与周围血液和组织之间相互作用的详细信息,这些潜在的重要装置的开发受到阻碍。下一代支架技术的适当设计的微流体装置可以仅使用少量血液就可以在生理剪切应力范围内同时评估降解镁表面的血栓形成潜力。关于血液对镁支架对支架临床成功的影响的新知识所提出的研究的具体目的如下:(1)比较镁基和不锈钢的表面降解行为——我们将测试不同剪切力的假设。微流控芯片中的应力将模拟体内生理流动条件,并允许对镁降解进行一致的定量测量,(2)比较模型系统中对镁和不锈钢的生理反应 - 血小板沉积与腐蚀之间相关性的新知识的假设镁合金的研究将为血栓形成提供定量价值(3) 评估可生物降解镁的栓塞潜力 - 我们将测试镁降解产物是可溶性而非颗粒性的假设,并且不太可能造成栓塞风险。该应用利用了 Yeoheung Yun 博士在生物材料科学方面的专业知识。 ,将引发支架设计和使用的重大转变,并开辟治疗动脉粥样硬化的新策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yeoheung Yun其他文献
Yeoheung Yun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yeoheung Yun', 18)}}的其他基金
Alzheimer's disease-replicated brain microphysiological system to model AD physiopathology and its influenceon gliovasculature and immune system
阿尔茨海默病复制脑微生理系统模拟 AD 病理生理学及其对胶质血管和免疫系统的影响
- 批准号:
10088826 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
Alzheimer's disease-replicated brain microphysiological system to model AD physiopathology and its influenceon gliovasculature and immune system
阿尔茨海默病复制脑微生理系统模拟 AD 病理生理学及其对胶质血管和免疫系统的影响
- 批准号:
10548211 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
Alzheimer's disease-replicated brain microphysiological system to model AD physiopathology and its influenceon gliovasculature and immune system
阿尔茨海默病复制脑微生理系统模拟 AD 病理生理学及其对胶质血管和免疫系统的影响
- 批准号:
10331755 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10510050 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10686166 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Neural Electrodes with Enhanced Charge Injection and Reduced Interfacial Impedance Using Graphenated Carbon Nanotubes Coated With Atomic Layer-Deposited Platinum Nanoparticles
使用原子层沉积铂纳米粒子涂覆的石墨化碳纳米管增强电荷注入并降低界面阻抗的神经电极
- 批准号:
9924896 - 财政年份:2020
- 资助金额:
$ 10.8万 - 项目类别:
Understanding The Impact of Diabetes on Implant Performance: A Retrieval Study
了解糖尿病对植入物性能的影响:一项检索研究
- 批准号:
9926078 - 财政年份:2019
- 资助金额:
$ 10.8万 - 项目类别:
Understanding The Impact of Diabetes on Implant Performance: A Retrieval Study
了解糖尿病对植入物性能的影响:一项检索研究
- 批准号:
10397567 - 财政年份:2019
- 资助金额:
$ 10.8万 - 项目类别: