High-throughput application of CRISPR technology to identify gene function in Salmonella
高通量应用CRISPR技术鉴定沙门氏菌基因功能
基本信息
- 批准号:9172073
- 负责人:
- 金额:$ 20.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-25 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBCAR1 geneBacteriaBacterial GenesBacterial GenomeBacterial PhysiologyCRISPR interferenceCRISPR/Cas technologyCessation of lifeChemicalsClustered Regularly Interspaced Short Palindromic RepeatsDataDevelopmentEffectivenessEngineeringEscherichia coliEssential GenesFutureGene DeletionGenesGenetic TranscriptionGenomic approachGenomicsGrowthHomologous GeneKnowledgeMethodologyMethodsPhenotypePositioning AttributeSalmonellaSalmonella entericaStudy modelsSystemTechnologyWorkYeastsbasedeletion librarygene functiongene repressiongenome-wideinnovationnext generation sequencingpathogenpromotertool
项目摘要
SUMMARY
Our understanding of bacterial physiology is limited by the fact that the majority of bacterial genes are
uncharacterized. Even in the best studied model bacterium, Escherichia coli K-12, >1,200 genes are completely
uncharacterized, and for many of the “characterized” genes, very little functional information is known. Our ability
to characterize gene functions is now outpaced by identification of new genes with unknown function. Hence, it
is critical that we develop high-throughput methodologies to reliably assign gene function at a more rapid pace.
Two such high-throughput methods, Chemical Genomics and SGA, have been developed for use in yeast, and
subsequently applied in E. coli. However, these methods are labor-intensive, provide little information about
essential genes, and are only readily applicable in species with one (for chemical genomics) or two (for SGA)
deletion collections (deletion collections are available for only a few bacterial species). Furthermore, SGA is only
applicable to species in which pairs of gene deletions can be easily combined.
We will harness the combined power of CRISPR interference (CRISPRi) and next-generation sequencing
technologies to redesign the Chemical Genomics and SGA approaches. Our preliminary data demonstrate the
effectiveness of this approach in E. coli and establish CRISPRi in Salmonella. CRISPRi-based methods for
Chemical Genomics and SGA have three major advantages over the established approaches. First, CRISPRi-
based methods are far less labor intensive and can be applied more rapidly and more cheaply than the existing
approaches. Second, CRISPRi-based methods are more effective for studying essential genes. Third, CRISPRi-
based methods are readily applicable to a wide range of bacterial species, including species that lack deletion
collections.
We expect to identify groups of functionally related genes using each approach individually, and by combining
data from both approaches. We expect that the relationships we identify between genes will be the basis of many
future studies, as has been the case for Chemical Genomics and SGA data in yeast and E. coli. Moreover, our
work will have a long-term impact by establishing these methods as facile, high-throughput tools for investigating
gene function in a wide variety of bacterial species. The proposed work is highly significant because it provides
a powerful solution to the major problem of identifying gene function. The proposed work is innovative because
no prior studies have applied CRISPRi to Chemical Genomics or SGA. Moreover, there have been no previous
high-throughput studies of gene function in Salmonella.
概括
我们对细菌生理学的理解受到以下事实的限制:大多数细菌基因都是
即使在研究最充分的模型细菌大肠杆菌 K-12 中,也有超过 1,200 个基因完全未被表征。
未表征,并且对于许多“表征”基因,我们的能力知之甚少。
现在,表征基因功能的速度已经落后于鉴定具有未知功能的新基因。
至关重要的是,我们开发高通量方法以更快的速度可靠地分配基因功能。
两种这样的高通量方法,化学基因组学和 SGA,已经开发用于酵母,并且
随后应用于大肠杆菌。然而,这些方法是劳动密集型的,提供的信息很少。
必需基因,并且仅适用于具有一个(对于化学基因组学)或两个(对于 SGA)的物种
删除集合(删除集合仅适用于少数细菌物种)。
适用于可以轻松组合成对基因缺失的物种。
我们将利用 CRISPR 干扰 (CRISPRi) 和下一代测序的综合力量
重新设计化学基因组学和 SGA 方法的技术我们的初步数据证明了这一点。
该方法在大肠杆菌中的有效性,并在沙门氏菌中建立了基于 CRISPRi 的方法。
与现有方法相比,化学基因组学和 SGA 具有三大优势:首先,CRISPRi-。
与现有方法相比,基于方法的劳动密集度要低得多,并且可以更快、更便宜地应用
其次,基于 CRISPRi 的方法对于研究必需基因更有效。
基于的方法很容易适用于广泛的细菌物种,包括缺乏缺失的物种
收藏。
我们期望单独使用每种方法并通过组合来识别功能相关的基因组
我们期望我们确定的基因之间的关系将成为许多研究的基础。
未来的研究,就像酵母和大肠杆菌中的化学基因组学和 SGA 数据一样。
通过将这些方法建立为简便、高通量的调查工具,工作将产生长期影响
这项工作非常重要,因为它提供了多种细菌物种中的基因功能。
所提出的工作是识别基因功能这一主要问题的有力解决方案,因为它是创新的。
此前还没有研究将 CRISPRi 应用于化学基因组学或 SGA。
沙门氏菌基因功能的高通量研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Thomas Wade其他文献
Joseph Thomas Wade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Thomas Wade', 18)}}的其他基金
STnc520, a virulence-associated regulatory RNA in Salmonella Typhimurium
STnc520,鼠伤寒沙门氏菌毒力相关的调节 RNA
- 批准号:
10307637 - 财政年份:2020
- 资助金额:
$ 20.96万 - 项目类别:
HTS assay development for bacterial transcription factors
细菌转录因子的 HTS 检测开发
- 批准号:
8436800 - 财政年份:2013
- 资助金额:
$ 20.96万 - 项目类别:
HTS assay development for bacterial transcription factors
细菌转录因子的 HTS 检测开发
- 批准号:
8739660 - 财政年份:2013
- 资助金额:
$ 20.96万 - 项目类别:
Characterization of a novel ETEC virulence regulator
新型 ETEC 毒力调节剂的表征
- 批准号:
8232038 - 财政年份:2011
- 资助金额:
$ 20.96万 - 项目类别:
Characterization of a novel ETEC virulence regulator
新型 ETEC 毒力调节剂的表征
- 批准号:
8091726 - 财政年份:2011
- 资助金额:
$ 20.96万 - 项目类别:
相似国自然基金
共载BCAR1/siRNA与顺铂的钙磷纳米载体治疗三阴性乳腺癌的研究
- 批准号:81602718
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel mechanism of virulence control in Porphyromonas gingivalis
牙龈卟啉单胞菌毒力控制的新机制
- 批准号:
10441545 - 财政年份:2021
- 资助金额:
$ 20.96万 - 项目类别:
A novel mechanism of virulence control in Porphyromonas gingivalis
牙龈卟啉单胞菌毒力控制的新机制
- 批准号:
10296292 - 财政年份:2021
- 资助金额:
$ 20.96万 - 项目类别:
Discovery of novel phage-bacterial interactions
发现新的噬菌体-细菌相互作用
- 批准号:
10478945 - 财政年份:2021
- 资助金额:
$ 20.96万 - 项目类别:
A novel mechanism of virulence control in Porphyromonas gingivalis
牙龈卟啉单胞菌毒力控制的新机制
- 批准号:
10653002 - 财政年份:2021
- 资助金额:
$ 20.96万 - 项目类别:
Discovery of novel phage-bacterial interactions
发现新的噬菌体-细菌相互作用
- 批准号:
10282672 - 财政年份:2021
- 资助金额:
$ 20.96万 - 项目类别: