Proton-Coupled Electron Transfer in Organic Synthesis and Asymmetric Catalysis
有机合成和不对称催化中的质子耦合电子转移
基本信息
- 批准号:8989128
- 负责人:
- 金额:$ 27.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAlcoholsAlkenesAmidesAmmoniumAreaBiologicalBiological ProcessCarbamatesCatalysisChemistryComplexCoupledCouplingDevelopmentElectron TransportElectronsEventFree RadicalsGenerationsGoalsHealthHumanHydrogenHydrogen BondingIonsKetonesKineticsLigandsLiteratureMediatingMetalsMethodsOrganic ChemistryOrganic SynthesisOrganometallic ChemistryOxidantsOxidation-ReductionPharmacologic SubstancePlayProcessProtocols documentationProtonsReactionReducing AgentsRoleScienceSolar EnergySulfoxideSynthesis ChemistryTechnologyWorkabstractingbasecatalystdesigndrug synthesisfunctional groupimprovedinnovationmetal complexnovelnovel therapeuticsoxidationsmall moleculestereochemistrytool
项目摘要
DESCRIPTION (provided by applicant): Proton-coupled electron transfers (PCETs) are unconventional redox processes in which an electron and proton are exchanged together in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic solar energy conversion technologies, its applications in organic chemistry remain largely unexplored. This proposal aims to establish concerted PCET as a general mode of substrate activation for organic synthesis, providing novel solutions to significant and long-standing synthetic challenges in the areas of free radical chemistry, asymmetric catalysis, and organometallic chemistry. The central goal of this work is to establish concerted PCET as a general mechanism for homolytic bond activation that is complementary to and broader in scope than conventional hydrogen atom transfer (HAT) chemistry. Specifically, concerted PCET provides a mechanism by which a Bronsted base and a one-electron oxidant can function together as a formal hydrogen-atom acceptor capable of selectively oxidizing bonds that are energetically inaccessible using conventional H-atom transfer catalyst platforms (up to 110 kcal/mol). Similarly, Bronsted acids and one-electron reductants can function jointly as formal H-atom donors, activating p bonds to form radical centers vicinal to extraordinarily weak bonds (<20 kcal/mol). Taken together with a unique kinetic feature of concerted PCET, this remarkable energetic range presents a framework to develop methods for the direct homolytic activation of nearly any organic functional group. In addition, PCET presents unique opportunities for controlling enantioselectivity in radical processes. PCET typically occurs through a hydrogen-bond complex between the substrate and a proton donor/acceptor. These H-bond interfaces often remain intact following the PCET event, resulting in the formation of strongly stabilized non-covalent complexes of neutral radical intermediates. When chiral proton donors/acceptors are employed, this association can provide a basis for asymmetric induction in subsequent bond forming events. Lastly, this proposal describes a novel PCET mechanism for the generation of organometallic intermediates from unfunctionalized substrates. This work exploits the ability of redox active metal centers to homolytically weaken the bonds in coordinated ligands, enabling otherwise strong X-H bonds (BDE ~100 kcal) to be abstracted by weak H-atom acceptors through concomitant oxidation of the metal center. This 'soft homolysis' mechanism provides a method to generate closed-shell organometallic intermediates from unfunctionalized starting materials under completely neutral conditions. Taken together, these technologies have the potential to simplify and improve the synthesis of drugs and other small-molecule probes of biological function, creating a significant benefit for human health and the associated biomedical sciences.
描述(由申请人提供):质子耦合电子转移(PCET)是非常规的氧化还原过程,其中电子和质子在协调的基本步骤中一起交换。虽然 PCET 现在被认为在生物氧化还原催化和无机太阳能转换技术中发挥着核心作用,但其在有机化学中的应用在很大程度上仍未得到探索。该提案旨在建立协同PCET作为有机合成底物活化的通用模式,为自由基化学、不对称催化和有机金属化学领域长期存在的重大合成挑战提供新颖的解决方案。 这项工作的中心目标是建立一致的 PCET 作为均裂键激活的通用机制,该机制与传统氢原子转移 (HAT) 化学互补且范围更广。具体来说,协同 PCET 提供了一种机制,通过该机制,布朗斯台德碱和单电子氧化剂可以作为形式氢原子受体一起发挥作用,能够选择性氧化使用传统氢原子转移催化剂平台(高达 110 kcal)在能量上难以接近的键。 /摩尔)。类似地,布朗斯台德酸和单电子还原剂可以共同充当正式的氢原子供体,激活 p 键以形成邻接至极弱键(<20 kcal/mol)的自由基中心。与协同 PCET 的独特动力学特征结合在一起,这种非凡的能量范围提供了一个框架,用于开发几乎任何有机官能团的直接均裂活化方法。此外,PCET 为控制自由基过程中的对映选择性提供了独特的机会。 PCET 通常通过底物和质子供体/受体之间的氢键复合物发生。这些氢键界面通常在 PCET 事件后保持完整,导致形成高度稳定的中性自由基中间体非共价复合物。当使用手性质子供体/受体时,这种缔合可以为后续成键事件中的不对称诱导提供基础。最后,该提案描述了一种新颖的 PCET 机制,用于从非功能化基材生成有机金属中间体。这项工作利用了氧化还原活性金属中心均裂削弱配位配体中键的能力,使原本较强的 X-H 键(BDE ~100 kcal)能够通过金属中心的伴随氧化被弱 H 原子受体夺走。这种“软均解”机制提供了一种在完全中性条件下由未官能化的起始材料生成闭壳有机金属中间体的方法。总而言之,这些技术有可能简化和改进药物和其他生物功能小分子探针的合成,为人类健康和相关生物医学科学创造重大利益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert R Knowles其他文献
Robert R Knowles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert R Knowles', 18)}}的其他基金
New Synthetic Methods Enabled by Excited-State Redox Chemistry
激发态氧化还原化学实现的新合成方法
- 批准号:
10542406 - 财政年份:2020
- 资助金额:
$ 27.34万 - 项目类别:
New Synthetic Methods Enabled by Excited-State Redox Chemistry
激发态氧化还原化学实现的新合成方法
- 批准号:
10077567 - 财政年份:2020
- 资助金额:
$ 27.34万 - 项目类别:
New Synthetic Methods Enabled by Excited-State Redox Chemistry
激发态氧化还原化学实现的新合成方法
- 批准号:
10326380 - 财政年份:2020
- 资助金额:
$ 27.34万 - 项目类别:
Asymmetric Capture of Carbocations: Novel Access to Benzylic Stereogenicity
碳阳离子的不对称捕获:获得苄基立体异构性的新方法
- 批准号:
7738892 - 财政年份:2008
- 资助金额:
$ 27.34万 - 项目类别:
Asymmetric Capture of Carbocations: Novel Access to Benzylic Stereogenicity
碳阳离子的不对称捕获:获得苄基立体异构性的新途径
- 批准号:
7541539 - 财政年份:2008
- 资助金额:
$ 27.34万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Identifying New Astrocytic Kir4.1 Channel Modulators for Treating Huntington's Disease
鉴定用于治疗亨廷顿病的新型星形细胞 Kir4.1 通道调节剂
- 批准号:
10681097 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
- 批准号:
10697452 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
Roles of peroxisomal dysfunction in alcohol-related liver disease
过氧化物酶体功能障碍在酒精相关性肝病中的作用
- 批准号:
10659535 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
The Role of ERRa in liver lipid dysfunction and pathology
ERRa 在肝脂质功能障碍和病理学中的作用
- 批准号:
10833730 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
Development of a Novel Medication for Alcohol Use Disorder with an Active IND Dual Inhibitor of T-Type Calcium Channel and Soluble Epoxide Hydrolase
使用 T 型钙通道和可溶性环氧化物水解酶的活性 IND 双重抑制剂开发治疗酒精使用障碍的新型药物
- 批准号:
10815882 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别: