Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery

多基因性、多效性和功效:基因发现的新统计方法

基本信息

项目摘要

DESCRIPTION (provided by applicant): As recently stated, "GWAS have so far identified only a small fraction of the heritability of common diseases, so the ability to make meaningful predictions is still quite limited" (Collins, 2010). This "missing heritability" has been attribute to a number of potential causes, and it has become clear that most complex traits are influenced by many genes, each with effects too small to be reliably discovered using traditional analyses of GWAS data. We propose to develop several innovative approaches to enhance gene discovery and improve replication rates and generalization performance of predictive models. These methods will vastly increase the power to detect true (non-null) effects in data derived from current GWAS. While we emphasize applications to currently existing GWAS data for Inflammatory Bowel Disease and Cardiovascular Disease Risk Factors, the same methodological framework will be applicable to next generation sequencing data. The Specific Aims of the proposal are: Aim 1: To Develop Statistical Methods Incorporating Functional Annotations that Improve Discovery Rates. We will develop and implement methods that extend current state-of-the-field analyses for GWAS of univariate phenotypes, using the LD-weighted SNP annotation methodology recently developed by our group. Specifically, we propose to extend the mixture model approach to account for SNP LD-weighted functional annotations. Aim 2: To Develop Statistical Methods Incorporating Pleiotropic Relationships that Improve Discovery Rates. We will generalize the mixture model approach to encompass covariance between z-scores of SNPs from two phenotypes simultaneously (i.e., pleiotropy) and to use the uncovered pleipotropic relationships to improve power for SNP discovery and replication. Aim 3: To Use Estimates from Empirical Bayes Models as Priors in Functional Characterization and Pathway Analyses. We will use posterior effect size estimates from pleiotropic Empirical Bayes analyses as inputs to explicate shared and unique genetic mechanisms of phenotypes, as well as molecular pathways. Aim 4: To Develop and Distribute Software. Computer software, implementing the methods developed in Aims 1-3, will be distributed as a freely available and user-friendly R package hosted on Bioconductor.org and as a suite of interactive GUI-based programs available on a website hosted by our lab.
描述(由申请人提供):正如最近所述,“迄今为止,GWAS 仅识别出常见疾病遗传力的一小部分,因此做出有意义的预测的能力仍然相当有限”(Collins,2010)。这种“遗传性缺失”可归因于许多潜在原因,而且很明显,大多数复杂性状都受到许多基因的影响,每个基因的影响都太小,无法使用传统的 GWAS 数据分析可靠地发现。我们建议开发几种创新方法来增强基因发现并提高预测模型的复制率和泛化性能。这些方法将极大地提高检测当前 GWAS 数据中真实(非零)效应的能力。虽然我们强调当前炎症性肠病和心血管疾病危险因素的 GWAS 数据的应用,但相同的方法框架将适用于下一代测序数据。该提案的具体目标是: 目标 1:开发结合功能注释的统计方法,以提高发现率。我们将使用我们小组最近开发的 LD 加权 SNP 注释方法来开发和实施扩展单变量表型 GWAS 的当前现状分析的方法。具体来说,我们建议扩展混合模型方法来解释 SNP LD 加权功能注释。目标 2:开发结合多效关系的统计方法,提高发现率。我们将推广混合模型方法,以同时包含来自两个表型的 SNP z 分数之间的协方差(即多效性),并使用未发现的多效性关系来提高 SNP 发现和复制的能力。目标 3:使用经验贝叶斯模型的估计作为功能表征和路径分析的先验。我们将使用多效性经验贝叶斯分析的后验效应大小估计作为输入,以阐明表型的共享和独特的遗传机制以及分子途径。目标 4:开发和分发软件。实现目标 1-3 中开发的方法的计算机软件将作为 Bioconductor.org 上托管的免费且用户友好的 R 包进行分发,并在我们实验室托管的网站上作为一套基于 GUI 的交互式程序进行分发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wesley Kurt Thompson其他文献

Wesley Kurt Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wesley Kurt Thompson', 18)}}的其他基金

NeuroMAP Phase II - Data Management and Statistics Core
NeuroMAP 第二阶段 - 数据管理和统计核心
  • 批准号:
    10711138
  • 财政年份:
    2023
  • 资助金额:
    $ 40.84万
  • 项目类别:
Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery
多基因性、多效性和功效:基因发现的新统计方法
  • 批准号:
    9283586
  • 财政年份:
    2014
  • 资助金额:
    $ 40.84万
  • 项目类别:
Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery
多基因性、多效性和功效:基因发现的新统计方法
  • 批准号:
    8625096
  • 财政年份:
    2014
  • 资助金额:
    $ 40.84万
  • 项目类别:
Polygenicity, Pleiotrophy and Power: Novel Statistical Methods for Gene Discovery
多基因性、多效性和功效:基因发现的新统计方法
  • 批准号:
    9068954
  • 财政年份:
    2014
  • 资助金额:
    $ 40.84万
  • 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
  • 批准号:
    7585777
  • 财政年份:
    2006
  • 资助金额:
    $ 40.84万
  • 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
  • 批准号:
    7209813
  • 财政年份:
    2006
  • 资助金额:
    $ 40.84万
  • 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
  • 批准号:
    7693998
  • 财政年份:
    2006
  • 资助金额:
    $ 40.84万
  • 项目类别:
Modeling Dynamic Covariation of Brain Function, Health and Symptoms in Depression
抑郁症中大脑功能、健康和症状的动态协变建模
  • 批准号:
    7373576
  • 财政年份:
    2006
  • 资助金额:
    $ 40.84万
  • 项目类别:
Modeling Covariation Brain Function, Health/Depression
协变大脑功能建模,健康/抑郁
  • 批准号:
    7079853
  • 财政年份:
    2006
  • 资助金额:
    $ 40.84万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structural analysis of the human LRRK2
人类 LRRK2 的结构分析
  • 批准号:
    10734733
  • 财政年份:
    2023
  • 资助金额:
    $ 40.84万
  • 项目类别:
Non-invasive biometric screening for cerebrovascular disorders in persons with Down syndrome.
唐氏综合症患者脑血管疾病的无创生物识别筛查。
  • 批准号:
    10816240
  • 财政年份:
    2023
  • 资助金额:
    $ 40.84万
  • 项目类别:
Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
  • 批准号:
    10759110
  • 财政年份:
    2023
  • 资助金额:
    $ 40.84万
  • 项目类别:
Early Onset Parkinson’s disease subtypes and pathogenic mechanisms
早发性帕金森病亚型及致病机制
  • 批准号:
    10719645
  • 财政年份:
    2023
  • 资助金额:
    $ 40.84万
  • 项目类别:
Empowering gene discovery and accelerating clinical translation for diverse admixed populations
促进基因发现并加速不同混合人群的临床转化
  • 批准号:
    10584936
  • 财政年份:
    2023
  • 资助金额:
    $ 40.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了