A Millimeter-wave Tunable Cavity for Ultra-sensitive Solids and Liquids DNP-NMR at Low Budget
用于低预算超灵敏固体和液体 DNP-NMR 的毫米波可调谐腔
基本信息
- 批准号:8834031
- 负责人:
- 金额:$ 19.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:Aluminum OxideBiologicalBiomedical ResearchBudgetsCellular MembraneCharacteristicsChemicalsComplexDataDatabasesDepositionDevelopmentEKG P WaveElectronsHeatingImaging TechniquesLaboratoriesLipidsLiquid substanceMagicMagnetic Resonance ImagingMagnetismMembrane ProteinsMethodsNorth CarolinaNuclearNuclear Magnetic ResonanceOpticsPhasePhysiologic pulsePriceProductionProteinsPublishingPumpRelative (related person)Research PersonnelResolutionSample SizeSamplingSignal TransductionSimulateSmall Business Technology Transfer ResearchSolidSourceStructureSystemTechniquesTemperatureTestingTimeTubeUniversitiesbasecostdesigndesign and constructionimprovedliquid dynamicsmacromoleculemicrowave electromagnetic radiationmillimeternanostructurednovelprotein structurepublic health relevanceresearch studysimulationsolid state nuclear magnetic resonancestructural biologytechnology developmenttooltransmission process
项目摘要
DESCRIPTION (provided by applicant): NMR is probably the most powerful and widely used analytical technique for structure determination and function elucidation of molecules of all types, but it suffers from low sensitivity, particularly for insoluble biological macromolecules. Dynamic Nuclear Polarization (DNP) with Magic Angle Spinning (MAS) has recently demonstrated S/N gains exceeding two orders of magnitude at ~100 K compared to conventional MAS-NMR in many biological solids. Despite this enormous benefit to biomedical research, the adaptation rate of DNP will be severely limited by its very high price tag (currently
$1.8-4M), mostly because of the special magnet (with sweep coils) and expensive gyrotron required, owing to the very poor microwave efficiency of current DNP probes. Our detailed simulations of a novel millimeter wave (mmw) DNP cavity have shown the potential for achieving the needed electron spin saturation with two orders of magnitude lower microwave power than the existing MAS-DNP designs for samples of similar volume (1-25 L) at the same B0 and temperature. The proposed novel DNP cavity is initially compatible only with static (non-spinning) methods, and the linewidths from static solids NMR techniques are always much greater than in MAS. However, static high-power methods, such as PISEMA, have been as fruitful as MAS methods in yielding structures of large, complex, helical membrane proteins because of the unique capability to provide correlated dipolar and anisotropic chemical shift data needed to resolve sign degeneracies. A novel stacked-plate cavity arrangement of nanostructured substrate containing macroscopically aligned and hydrated membrane proteins developed by collaborating NCSU team dramatically reduces sample heating enabling substantial DNP S/N enhancements even for lossy liquid samples at or near RT with substantially improved spectral resolution. Related cavity designs compatible with MAS-DNP, inspired by the static-DNP cavity, will also be simulated. The static DNP cavity and probe that will be initially developed for 7 T is expected to yield two orders of magnitude gain in S/N for a wide range of solids NMR experiments, and it will do so with two orders of magnitude lower mmw power than competing MAS-DNP designs. This will make it possible for virtually all current NMR groups to bring static H/X/Y/e- DNP capabilities into their labs - for both solids and liquids - for a total entry budget of under $150K, including the 0.05-0.3 W mmw source, DNP probe, waveguides, and transitions - all scalable to very high fields. Development of the Doty static-DNP cavity could allow the number of groups doing DNP-NMR worldwide to increase from a handful to hundreds over the next four to eight years. Overall, the proposed technology development is expected to provide biomedical researchers with tremendous new opportunities for the structure-function studies of membrane proteins and cellular membrane systems.
描述(由申请人提供):NMR 可能是用于所有类型分子的结构测定和功能阐明的最强大和最广泛使用的分析技术,但它的灵敏度较低,特别是对于具有动态核极化(DNP)的不溶性生物大分子。最近,在许多生物固体中,魔角旋转 (MAS) 的信噪比比传统的 MAS-NMR 提高了两个数量级,尽管这对生物医学有巨大的好处。研究表明,DNP 的适应率将因其非常高的价格而受到严重限制(目前
1.8-4M 美元),主要是因为当前 DNP 探头的微波效率非常差,需要特殊磁铁(带有扫描线圈)和昂贵的回旋管,我们对新型毫米波 (mmw) DNP 腔的详细模拟显示了其潜力。在相同的 B0 和温度下,对于相似体积(1-25 µL)的样品,以比现有 MAS-DNP 设计低两个数量级的微波功率实现所需的电子自旋饱和。 DNP 腔最初仅与静态(非旋转)方法兼容,并且静态固体 NMR 技术的线宽始终比 MAS 中的线宽大得多。但是,PISEMA 等静态高功率方法与 MAS 方法一样富有成效。由于具有提供解决符号简并所需的相关偶极和各向异性化学位移数据的独特能力,因此可以产生大型、复杂、螺旋膜蛋白的结构。 NCSU 团队合作开发的宏观排列和水合膜蛋白可显着降低样品加热,即使对于处于或接近室温的有损液体样品,也能显着提高 DNP 信噪比,并且受静态影响,与 MAS-DNP 兼容的相关腔体设计也得到了显着提高。 -DNP 腔,最初为 7 T 开发的静态 DNP 腔和探头预计将为各种固体 NMR 实验产生两个数量级的信噪比增益。与竞争的 MAS-DNP 设计相比,毫米波功率低两个数量级,这将使所有当前 NMR 团队能够将静态 H/X/Y/e-DNP 功能引入其实验室 - 对于几乎固体和液体。 - 总入门预算低于 15 万美元,包括 0.05-0.3 W 毫米波源、DNP 探头、波导和转换 - 所有这些都可扩展到非常高的领域 Doty 静态 DNP 的开发。空腔可以使世界范围内进行 DNP-NMR 的研究小组数量在未来四到八年内从少数增加到数百个。总体而言,拟议的技术开发预计将为生物医学研究人员的结构功能研究提供巨大的新机会。膜蛋白和细胞膜系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis DAVID Doty其他文献
Francis DAVID Doty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis DAVID Doty', 18)}}的其他基金
Ultra-low-temperature (6 K) static NMR-DNP for metalloproteins, proteins in cells, and materials
用于金属蛋白、细胞中蛋白质和材料的超低温 (6 K) 静态 NMR-DNP
- 批准号:
10546201 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
A Novel Waveguide to Enable MAS-DNP-NMR in Standard-bore High-field Magnets
一种新型波导,可在标准孔径高场磁体中实现 MAS-DNP-NMR
- 批准号:
10081009 - 财政年份:2020
- 资助金额:
$ 19.73万 - 项目类别:
A Novel Waveguide to Enable MAS-DNP-NMR in Standard-bore High-field Magnets
一种新型波导,可在标准孔径高场磁体中实现 MAS-DNP-NMR
- 批准号:
10602643 - 财政年份:2020
- 资助金额:
$ 19.73万 - 项目类别:
A Reliable Switched Angle Spinning (SAS) Probe with Gradients (PFG) for Proteins in Solid-State NMR
用于固态 NMR 中蛋白质的可靠的带梯度 (PFG) 的转角旋转 (SAS) 探针
- 批准号:
10667507 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
A Reliable Switched Angle Spinning (SAS) Probe with Gradients (PFG) for Proteins in Solid-State NMR
用于固态 NMR 中蛋白质的可靠的带梯度 (PFG) 的转角旋转 (SAS) 探针
- 批准号:
10325061 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
A Reliable Switched Angle Spinning (SAS) Probe with Gradients (PFG) for Proteins in Solid-State NMR
用于固态 NMR 中蛋白质的可靠的带梯度 (PFG) 的转角旋转 (SAS) 探针
- 批准号:
10456218 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
A Novel Millimeter-wave (mmw) DNP/EPR Front-end Compatible with Versatile High-field NMR Probes
与多功能高场 NMR 探头兼容的新型毫米波 (mmw) DNP/EPR 前端
- 批准号:
9343460 - 财政年份:2017
- 资助金额:
$ 19.73万 - 项目类别:
An HXYZ-g HR-Fast-MAS probe for Dramatically Improved Biomolecular Structure Determinations
用于显着改进生物分子结构测定的 HXYZ-g HR-Fast-MAS 探针
- 批准号:
9988618 - 财政年份:2016
- 资助金额:
$ 19.73万 - 项目类别:
A Quad-Fast-MAS probe for Dramatically Improved Biomolecular Structure Determinations
用于显着改进生物分子结构测定的 Quad-Fast-MAS 探针
- 批准号:
9045315 - 财政年份:2016
- 资助金额:
$ 19.73万 - 项目类别:
An H/F/X/Y Fast-MAS NMR Probe Particularly for Alzheimer's and Cancer Research
特别适用于阿尔茨海默病和癌症研究的 H/F/X/Y Fast-MAS NMR 探针
- 批准号:
10224643 - 财政年份:2016
- 资助金额:
$ 19.73万 - 项目类别:
相似国自然基金
生物医学跨本体术语相似度方法及其在B细胞非霍奇金淋巴瘤中的应用研究
- 批准号:62372276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向生物医学文本的知识自动总结研究
- 批准号:72304189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水凝胶光纤氧气传感关键问题研究及在生物医学中的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属配位诱导的靶向蛋白降解平台的构建及生物医学应用研究
- 批准号:22277141
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向生物医学领域的多模态学术图像不端检测技术研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
An Engineered Surface of Mucociliary Transport for Medical Devices
用于医疗器械的粘膜纤毛运输工程表面
- 批准号:
10627572 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
Resonator Approach to Pulsed Dynamic Nuclear Polarization of Membrane Proteins
膜蛋白脉冲动态核极化的谐振器方法
- 批准号:
10242008 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
Resonator Approach to Pulsed Dynamic Nuclear Polarization of Membrane Proteins
膜蛋白脉冲动态核极化的谐振器方法
- 批准号:
10004143 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
Inorganic Nanoparticles in Non-Polymeric Organic Coating for Biomedical Applicati
用于生物医学应用的非聚合有机涂层中的无机纳米颗粒
- 批准号:
7895786 - 财政年份:2009
- 资助金额:
$ 19.73万 - 项目类别: