Innovative methods for modeling longitudianl medical costs
纵向医疗成本建模的创新方法
基本信息
- 批准号:8088732
- 负责人:
- 金额:$ 44.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Innovative Methods for Modeling Longitudinal Medical Costs It is projected that health care costs per person would increase from $8,160 in 2009 to $13,100 in 2018, and that total health care costs will account for over 20% of the gross domestic product by 2018. Statistical analysis of medical cost data is becoming increasingly important with the heightened interests in containing the rising health care cost. Medical cost data are routinely collected in billing records of hospitals and claims of health insurance plans (e.g., Medicare, Medicaid, or commercial insurance). The wide availability of such data has motivated the development and application of the state-of-the-art statistical and econometric methods. With technological advances in automated data collection and management, medical costs are now often gathered at regular time intervals (e.g., daily or monthly), creating a longitudinal data pattern. The objective of this study is to develop and disseminate a number of models to analyze longitudinal medical costs data. There are five aims in this grant. First, we will expand the currently available econometric models of medical costs to longitudinal data and compare the performance of these models. Second, we will explore the use of more flexible functional forms of covariate specification in modeling longitudinal medical cost data. Third, we will extend the above models to jointly analyze medical costs and multiple health outcomes (e.g., survival, or quality of life), and study the effect of risk factors on them simultaneously. Fourth, we will apply hierarchical models to address the clustering effect in modeling longitudinal medical cost at different levels, e.g., health plans, families, and members. Finally, we will develop ready-to-use software to facilitate the practical application of methods developed from the proposed study. In addition to testing the performance of the proposed methods in simulation studies, these innovative methods will be applied to empirical case studies using three real-world databases: Clinical Data Repository (CDR) at the University of Virginia (UVA) Health System, Medical Expenditure Panel Survey (MEPS), and the SEER- Medicare databases. We expect the application of the proposed methods to these case studies will substantially advance our understanding of the influence of demographics, physician practice patterns, diseases, and health policies on the cost of medical care.
PUBLIC HEALTH RELEVANCE: Rising health care cost is a major concern for health policy makers. To better understand the factors associated with the growth in medical cost, it is important to study the longitudinal history of medical cost data. We propose to develop better methods to analyze longitudinal medical care costs data. To demonstrate the advantages of our proposed methods in clinical or policy decision making, we will apply these methods to a number of clinical- or policy-relevant case studies. We will also make programming codes of these methods available to other researchers who are interested in medical cost studies.
描述(申请人提供):纵向医疗费用建模的创新方法 预计人均医疗费用将从 2009 年的 8,160 美元增加到 2018 年的 13,100 美元,医疗费用总额将占国内生产总值的 20% 以上到 2018 年,随着人们对控制医疗费用上涨的兴趣日益浓厚,医疗费用数据的统计分析变得越来越重要。医疗费用数据通常收集在医院的账单记录和健康保险计划(例如医疗保险、医疗补助或商业保险)的索赔中。此类数据的广泛可用性推动了最先进的统计和计量经济学方法的开发和应用。随着自动化数据收集和管理技术的进步,现在通常定期收集医疗费用(例如每天或每月),从而创建纵向数据模式。本研究的目的是开发和传播多种模型来分析纵向医疗费用数据。这笔赠款有五个目标。首先,我们将现有的医疗成本计量经济学模型扩展到纵向数据,并比较这些模型的性能。其次,我们将探索在纵向医疗成本数据建模中使用更灵活的协变量规范函数形式。第三,我们将扩展上述模型,联合分析医疗费用和多种健康结果(例如生存或生活质量),并同时研究危险因素对其的影响。第四,我们将应用分层模型来解决不同级别(例如健康计划、家庭和成员)纵向医疗成本建模中的聚类效应。最后,我们将开发即用型软件,以促进所提出的研究开发的方法的实际应用。除了在模拟研究中测试所提出方法的性能外,这些创新方法还将应用于使用三个真实世界数据库的实证案例研究:弗吉尼亚大学 (UVA) 卫生系统的临床数据存储库 (CDR)、医疗支出小组调查 (MEPS) 和 SEER-Medicare 数据库。我们预计,将所提出的方法应用于这些案例研究将大大增进我们对人口统计、医生执业模式、疾病和健康政策对医疗保健成本影响的理解。
公共卫生相关性:不断上涨的医疗保健成本是卫生政策制定者关注的主要问题。为了更好地了解与医疗费用增长相关的因素,研究医疗费用数据的纵向历史非常重要。我们建议开发更好的方法来分析纵向医疗费用数据。为了证明我们提出的方法在临床或政策决策中的优势,我们将这些方法应用于许多临床或政策相关的案例研究。我们还将向对医疗成本研究感兴趣的其他研究人员提供这些方法的编程代码。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Liu其他文献
Development of indirect competitive immunoassay for highly sensitive determination of ractopamine in pork liver samples based on surface plasmon resonance sensor
基于表面等离子共振传感器的间接竞争免疫分析法高灵敏测定猪肝样品中的莱克多巴胺
- DOI:
10.1016/j.snb.2011.09.078 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ming Liu;Baoan Ning;Lijie Qu;Yuan Peng;Jianwei Dong;Na Gao;Lei Liu;Zhixian Gao - 通讯作者:
Zhixian Gao
Lei Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Liu', 18)}}的其他基金
Innovative precision medicine methods in subgroup identification for Alzheimer's disease
阿尔茨海默病亚组鉴定的创新精准医学方法
- 批准号:
10740649 - 财政年份:2023
- 资助金额:
$ 44.48万 - 项目类别:
Innovative Analytical Methods for DNA Methylation Age
DNA 甲基化时代的创新分析方法
- 批准号:
10226664 - 财政年份:2021
- 资助金额:
$ 44.48万 - 项目类别:
Innovative Analytical Methods for DNA Methylation Age
DNA 甲基化时代的创新分析方法
- 批准号:
10414080 - 财政年份:2021
- 资助金额:
$ 44.48万 - 项目类别:
A previously unrecognized β/γ-secretases complex as a therapeutic target for AD
以前未被认识的 β/γ 分泌复合物作为 AD 的治疗靶点
- 批准号:
9902298 - 财政年份:2019
- 资助金额:
$ 44.48万 - 项目类别:
Innovative methods for modeling longitudianl medical costs
纵向医疗成本建模的创新方法
- 批准号:
8723753 - 财政年份:2011
- 资助金额:
$ 44.48万 - 项目类别:
Innovative methods for modeling longitudianl medical costs
纵向医疗成本建模的创新方法
- 批准号:
8337204 - 财政年份:2011
- 资助金额:
$ 44.48万 - 项目类别:
Innovative methods for modeling longitudianl medical costs
纵向医疗成本建模的创新方法
- 批准号:
8529465 - 财政年份:2011
- 资助金额:
$ 44.48万 - 项目类别:
Statistical Analysis of Longitudinal Medical Cost Data
纵向医疗费用数据统计分析
- 批准号:
7323323 - 财政年份:2007
- 资助金额:
$ 44.48万 - 项目类别:
相似国自然基金
产品造型的类比推理式对抗生成设计方法研究
- 批准号:51905175
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于近壁面二次流修正方法的高负荷轴流压气机吸力面-端面造型反设计研究
- 批准号:51906027
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于知识重用的车身自动几何建模方法研究
- 批准号:51905389
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于弱监督深度学习的三维模型多特征自适应形状分析方法研究
- 批准号:61872321
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
面向设计重用的特征CAD模型检索及曲线/曲面重建方法研究
- 批准号:61802355
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 44.48万 - 项目类别:
Dissemination of the Human Neocortical Neurosolver (HNN) software for circuit level interpretation of human MEG/EEG
传播用于人类 MEG/EEG 电路级解释的人类新皮质神经解算器 (HNN) 软件
- 批准号:
10726032 - 财政年份:2023
- 资助金额:
$ 44.48万 - 项目类别:
Developing FAIR practices for cloud-enabled AI deployment for prospective testing
为基于云的人工智能部署制定公平实践以进行前瞻性测试
- 批准号:
10827803 - 财政年份:2023
- 资助金额:
$ 44.48万 - 项目类别:
Expanding Access to Care for Marginalized Caregivers through Innovative Methods for Multicultural and Multilingual Adaptation of AI-Based Health Technologies
通过基于人工智能的医疗技术的多文化和多语言适应创新方法,扩大边缘化护理人员获得护理的机会
- 批准号:
10741177 - 财政年份:2023
- 资助金额:
$ 44.48万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function - Renewal - 1
针对结构和功能的新型青光眼诊断 - 更新 - 1
- 批准号:
10866656 - 财政年份:2023
- 资助金额:
$ 44.48万 - 项目类别: