Probing the Bioeffects of Cavitation at Single-Cell Level
在单细胞水平上探讨空化的生物效应
基本信息
- 批准号:8866402
- 负责人:
- 金额:$ 7.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAnimal ExperimentsAntineoplastic AgentsBindingBiologicalBlast CellBlood - brain barrier anatomyCell CommunicationCell Culture TechniquesCell LineCell surfaceCellsChondrocytesClinicContrast MediaCytolysisCytoskeletonDevelopmentDevicesDifferentiation and GrowthDrug Delivery SystemsEpithelial CellsFocused UltrasoundFoundationsFractionationFractureFracture HealingFutureGoalsHealedHealthHela CellsIn VitroIndividualInterdisciplinary StudyInvestigationKnowledgeLasersLocationMechanicsMedicalMedical TechnologyMembraneMethodsMicrofabricationMicrofluidicsNatureOrthopedicsPain managementPatternPhasePilot ProjectsProcessProductionRegenerative MedicineResearchResearch PersonnelShockSiteSonicationStem cellsSurfaceSystemTechniquesTechnologyTherapeuticTherapeutic EffectTissue EngineeringTissuesTranslational ResearchTraumatic Brain InjuryTreatment ProtocolsUltrasonic TransducerUltrasonicsUltrasonographyValidationbasecancer therapycell typeclinical applicationclinically relevantdesignfollow-uphealingimprovedin vivoinjury and repairinsightnew technologynovelsoft tissuetemporal measurementtreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Because of their non-invasiveness and non-ionization nature, therapeutic ultrasound and focused shock waves have been used extensively in clinic for the treatment of cancers, targeted drug delivery (such as opening of blood-brain-barriers), disintegration of concretions, fractionation of soft tissues, and healing of non-union fractures, a well as pain therapy. Although in all these applications cavitation has often been implicated as a key mechanism whereby the desirable therapeutic effects and, in some cases, the undesirable adverse effects are produced, the dynamic processes of bubble(s)-tissue interaction and, in particular, bubble(s)-cell interaction, are largely unknown. This is primarily due to the lack of viable experimental systems that can be used to investigate such dynamic interactions with sufficient spatial and temporal resolutions. To overcome this primary challenge, we propose to develop a new experimental system and associated technologies to investigate the bioeffects produced by cavitation bubbles at the single cell level. This project will be carried out by a multidisciplinary research team with recognized expertise in therapeutic ultrasound and cavitation (Zhong Lab) and cell mechanics (Guilak Lab). Two specific aims are proposed: 1) development of a microfluidic based system that allows for precise control of the location and orientation of individual cells grown in each channel, as well as their spatial alignment with laser- and ultrasound-generated cavitation bubbles, 2) investigation of the bioeffects (cell lysis,
membrane poration, Ca2+ influx, cytoskeleton re-arrangement, injury repair, viability, and proliferation) and mechanical deformation of the cell produced by the bubble(s)-cell interaction using representative cell lines (i.e., HeLa cells, MDCK epithelial cells, and chondrocytes) relevant to therapeutic ultrasound and shock wave therapy. With a better understanding of the bubble(s)-cell interaction and the resultant mechanical and biological consequences elicited in different cell types, we hope to gain insights that may be used in the future to improve the design of therapeutic ultrasound and shock wave devices, as well as treatment protocols for safe and more effective medical applications. Furthermore, the new knowledge acquired from this project may be used to develop novel ultrasonic techniques that can be applied to stimulate stem cells under precise mechanical loading conditions to impact their differentiation, growth and phenotypic expression with tissue engineering and regenerative medicine applications. The goal of this R03 application is to demonstrate the feasibility in constructing such a novel experimental system and developing associated technologies for assessing the bioeffects produced by cavitation bubbles at the single-cell level, while the comprehensive utilization of this novel system will be exploited in a follow-up RO1 application.
描述(由申请人提供):由于其非侵入性和非电离性质,治疗超声和聚焦冲击波已广泛应用于临床治疗癌症、靶向药物输送(如打开血脑屏障) )、结石崩解、软组织分割、不愈合骨折愈合以及疼痛治疗。尽管在所有这些应用中,空化通常被认为是产生理想治疗效果以及在某些情况下产生不良副作用的关键机制,但气泡与组织相互作用的动态过程,特别是气泡( s)-细胞相互作用,很大程度上是未知的。这主要是由于缺乏可行的实验系统来研究具有足够空间和时间分辨率的动态相互作用。为了克服这一主要挑战,我们建议开发一种新的实验系统和相关技术来研究单细胞水平上空化气泡产生的生物效应。该项目将由多学科研究团队进行,该团队在治疗性超声和空化(Zhong 实验室)以及细胞力学(Guilak 实验室)方面拥有公认的专业知识。提出了两个具体目标:1)开发基于微流体的系统,可以精确控制每个通道中生长的单个细胞的位置和方向,以及它们与激光和超声产生的空化气泡的空间对准,2)生物效应研究(细胞裂解,
使用代表性细胞系(即 HeLa 细胞、MDCK 上皮细胞和软骨细胞)与治疗性超声和冲击波疗法相关。通过更好地了解气泡与细胞的相互作用以及在不同细胞类型中引起的机械和生物后果,我们希望获得可在未来用于改进治疗性超声和冲击波设备的设计的见解,以及安全和更有效的医疗应用的治疗方案。此外,从该项目中获得的新知识可用于开发新型超声波技术,该技术可用于在精确的机械负载条件下刺激干细胞,以通过组织工程和再生医学应用影响其分化、生长和表型表达。 R03应用的目标是证明构建这样一个新颖的实验系统和开发相关技术以评估单细胞水平空化气泡产生的生物效应的可行性,同时该新颖系统的综合利用将在以下领域得到开发:后续RO1申请。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PEI ZHONG其他文献
PEI ZHONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PEI ZHONG', 18)}}的其他基金
Improving Mechanistic Understanding and Treatment Efficiency of Laser Lithotripsy
提高激光碎石机制的理解和治疗效率
- 批准号:
9913084 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Improving Mechanistic Understanding and Treatment Efficiency of Laser Lithotripsy
提高激光碎石机制的理解和治疗效率
- 批准号:
10019531 - 财政年份:2019
- 资助金额:
$ 7.95万 - 项目类别:
Probing the Bioeffects of Cavitation at Single-Cell Level
在单细胞水平上探讨空化的生物效应
- 批准号:
8770631 - 财政年份:2014
- 资助金额:
$ 7.95万 - 项目类别:
Novel Strategies to Broaden the Impact of HIFU Therapy in Cancer Management
扩大 HIFU 治疗在癌症治疗中影响的新策略
- 批准号:
7511449 - 财政年份:2008
- 资助金额:
$ 7.95万 - 项目类别:
Novel Strategies to Broaden the Impact of HIFU Therapy in Cancer Management
扩大 HIFU 治疗在癌症治疗中影响的新策略
- 批准号:
7694354 - 财政年份:2008
- 资助金额:
$ 7.95万 - 项目类别:
Development of a Next-Generation Shock Wave Lithotripter
下一代冲击波碎石机的开发
- 批准号:
6832531 - 财政年份:2004
- 资助金额:
$ 7.95万 - 项目类别:
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unraveling the intersection of synaptic biology, lifestyle, and cognitive resilience
揭示突触生物学、生活方式和认知弹性的交叉点
- 批准号:
10214288 - 财政年份:2021
- 资助金额:
$ 7.95万 - 项目类别:
Unraveling the intersection of synaptic biology, lifestyle, and cognitive resilience
揭示突触生物学、生活方式和认知弹性的交叉点
- 批准号:
10605265 - 财政年份:2021
- 资助金额:
$ 7.95万 - 项目类别:
Unraveling the intersection of synaptic biology, lifestyle, and cognitive resilience
揭示突触生物学、生活方式和认知弹性的交叉点
- 批准号:
10443614 - 财政年份:2021
- 资助金额:
$ 7.95万 - 项目类别:
Understanding the roles type I Interferon and TH17 play in Neuromyelitis Optica and other autoimmune diseases.
了解 I 型干扰素和 TH17 在视神经脊髓炎和其他自身免疫性疾病中的作用。
- 批准号:
9751758 - 财政年份:2018
- 资助金额:
$ 7.95万 - 项目类别:
Understanding the roles type I Interferon and TH17 play in Neuromyelitis Optica and other autoimmune diseases.
了解 I 型干扰素和 TH17 在视神经脊髓炎和其他自身免疫性疾病中的作用。
- 批准号:
10215451 - 财政年份:2018
- 资助金额:
$ 7.95万 - 项目类别: