Engineering Differentiation of Multi-tissue Units
多组织单位的工程分化
基本信息
- 批准号:8106219
- 负责人:
- 金额:$ 54.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAllograftingAnatomic SitesAutomobile DrivingBindingBinding ProteinsBiochemicalBiomechanicsCell CommunicationCell Differentiation processCellsChemicalsClinicalComplexCuesDataDermalDevelopmentDiffusionDirect CostsDiscriminationElementsEndocrineEngineeringEnvironmentExtracellular MatrixFacilities and Administrative CostsGoalsGrantGroupingGrowth FactorHeterogeneityHistologicHumanImmune responseImplantIn SituIn VitroInvestigationLeadMediatingMethodologyModelingMusMuscleMusculoskeletalMusculoskeletal SystemOutcomeParacrine CommunicationPatternPeptide HydrolasesPhasePhenotypePhysiologicalPopulationPrintingPropertyProtease InhibitorProteoglycanResolutionSignaling MoleculeSiteSolidSourceSpatial DistributionStagingStem cellsStimulusStructureTechnologyTendon structureTissue EngineeringTissuesValidationachilles tendonbasebonecombinatorialdesigndosageengineering designimprovedin vitro Modelin vivoinhibitor/antagonistinjuredinsightinterfacialmillimetermouse modelmuscle engineeringnovelpublic health relevancerepairedresponsescaffoldstem cell populationsubcutaneouswound
项目摘要
DESCRIPTION (provided by applicant): Tissue engineering approaches for driving stem cells toward spatially-organized multi-tissue units of the musculoskeletal system, such as muscle-tendon-bone (MTB), will require spatial control of differentiative cues provided by various components of tissue-engineered constructs, including their: biochemical elements; scaffold material composition and structure; and, biomechanical interactions. Current toolsets to aid in the early stages of discovery, design, and implementation of such complex, multi-variable constructs are either non- existent or severely limited in their capabilities to incorporate spatial control of those biochemical elements provided by exogenous paracrine signaling factors (PSFs). To address this need, we propose a novel PSF biopatterning technology that will enable the creation of persistent, spatially-defined patterns of PSFs organized in multiple neighboring regions of a scaffold, where each region targets a different phenotype to be induced. This capability will be unique because it will enable an exogenous or endogenous stem cell population exposed to a PSF-patterned construct to be driven toward multiple differentiative fates simultaneously in register to these patterns, at sub-millimeter resolution, to form neighboring multi-phenotype groupings within the same construct, both in vitro and in vivo. Pattern designs for an MTB will first be determined with the aid of a systematic design methodology applied to in vitro studies to identify a minimum set of spatially-patterned PSF cues out of a very large number of design possibilities, and then the resulting highest ranking designs will be validated in vivo for driving tissue phenotype formation in an ectopic subcutaneous mouse model. As an additional in vivo validation PSF patterned constructs will be implanted into a mouse Achilles tendon wound model to initiate site-specific host response, and histologically assessed for tissue phenotype expression in register to patterns applied.
PUBLIC HEALTH RELEVANCE: New tissue engineering therapies are needed to address the growing demand to repair multi-tissue structures of the musculoskeletal system, such as interconnected bone-tendon-muscle units that are diseased or injured. This becomes an even greater challenge because of the need to spatially control multiple differentiation fates simultaneously, including multi-unit tissue interfaces, within the same intercommunicating pericellular environment. There is an unmet need for new tissue-engineered construct technologies and design methodologies that will enable a stem cell population to be driven toward neighboring regions of different differentiation fates in each region, in vitro and in vivo. We propose to develop and demonstrate a spatial patterning methodology that uses a limited number of exogenous signaling molecules, patterned in scaffolds, to direct stem cells in the musculoskeletal system down multiple neighboring and intercommunicating differentiation fates as a first order model of multi-tissue formation and interaction. Engineered spatial patterning will provide new insights about multi-tissue formation, with the long-term goal to use patterned constructs to improve clinical outcomes of musculoskeletal-related treatments, which represents an estimated annual direct and indirect cost of $510 billion, in terms of 2004 dollars, or 3.1 % of the GDP in the US alone.
描述(由申请人提供):用于驱动干细胞朝向肌肉骨骼系统的空间组织的多组织单位(例如肌肉-腱-骨(MTB))的组织工程方法将需要对由不同成分提供的分化线索进行空间控制。组织工程构建体,包括其: 生化元素;支架材料成分及结构;以及生物力学相互作用。目前在发现、设计和实施此类复杂的多变量结构的早期阶段提供帮助的工具集要么不存在,要么在整合由外源旁分泌信号因子(PSF)提供的生化元素的空间控制方面的能力受到严重限制。 )。为了满足这一需求,我们提出了一种新颖的 PSF 生物图案技术,该技术将能够创建在支架的多个相邻区域中组织的持久的、空间定义的 PSF 图案,其中每个区域针对要诱导的不同表型。这种能力将是独一无二的,因为它将使暴露于 PSF 图案构建体的外源或内源干细胞群能够以亚毫米分辨率同时驱动多个分化命运,与这些图案对齐,形成相邻的多表型分组在体外和体内的同一构建体中。 MTB 的图案设计首先将借助应用于体外研究的系统设计方法来确定,以从大量的设计可能性中识别出一组最小的空间图案 PSF 线索,然后得出最高排名的设计将在异位皮下小鼠模型中对驱动组织表型形成进行体内验证。作为额外的体内验证,PSF 图案化构建体将被植入小鼠跟腱伤口模型中,以启动位点特异性宿主反应,并根据所应用的图案对组织表型表达进行组织学评估。
公共健康相关性:需要新的组织工程疗法来满足修复肌肉骨骼系统多组织结构日益增长的需求,例如患病或受伤的相互连接的骨-肌腱-肌肉单元。这成为一个更大的挑战,因为需要在同一相互通信的细胞周环境中同时在空间上控制多种分化命运,包括多单元组织界面。对新的组织工程构建技术和设计方法的需求尚未得到满足,这些技术和设计方法将使干细胞群能够在体外和体内被驱动到每个区域中具有不同分化命运的邻近区域。我们建议开发和展示一种空间图案化方法,该方法使用有限数量的外源信号分子,在支架上图案化,引导肌肉骨骼系统中的干细胞向下多个相邻和相互沟通的分化命运,作为多组织形成的一阶模型和相互作用。工程空间图案将为多组织形成提供新的见解,其长期目标是使用图案化结构来改善肌肉骨骼相关治疗的临床结果,这意味着以 2004 年计算,每年的直接和间接成本估计为 5100 亿美元美元,仅占美国 GDP 的 3.1%。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHIL GORDON CAMPBELL其他文献
PHIL GORDON CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHIL GORDON CAMPBELL', 18)}}的其他基金
Clickable Extracellular Vesicles to Silk-Based Biomaterials for Regenerative Medicine
用于再生医学的可点击细胞外囊泡到丝基生物材料
- 批准号:
10642420 - 财政年份:2023
- 资助金额:
$ 54.92万 - 项目类别:
Implantable Biodegradable RF-Powered Tissue Stimulator and Electrodes
植入式可生物降解射频供电组织刺激器和电极
- 批准号:
8327170 - 财政年份:2011
- 资助金额:
$ 54.92万 - 项目类别:
Implantable Biodegradable RF-Powered Tissue Stimulator and Electrodes
植入式可生物降解射频供电组织刺激器和电极
- 批准号:
8241552 - 财政年份:2011
- 资助金额:
$ 54.92万 - 项目类别:
Cell Response to 3D Engineered Gradients of FGF-2
细胞对 FGF-2 3D 工程梯度的反应
- 批准号:
7367807 - 财政年份:2005
- 资助金额:
$ 54.92万 - 项目类别:
Cell Response to 3D Engineered Gradients of FGF-2
细胞对 FGF-2 3D 工程梯度的反应
- 批准号:
7185109 - 财政年份:2005
- 资助金额:
$ 54.92万 - 项目类别:
相似国自然基金
C2烃类吸附分离导向的分子筛材料设计合成及性能研究
- 批准号:22375070
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脓毒症炎症反应调控的自抗凝循环组蛋白吸附剂的构建及机理研究
- 批准号:82300848
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
表面官能团调控吸附态羟基自由基生成机制及其选择性氧化特性研究
- 批准号:22306131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电位响应型CO2吸附剂构筑及吸脱附过程控制研究
- 批准号:22308234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 54.92万 - 项目类别: