Biomechanical Measurement and Modeling of Normal and Diseased Middle Ears
正常和患病中耳的生物力学测量和建模
基本信息
- 批准号:8088449
- 负责人:
- 金额:$ 35.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAgeAirAnatomic structuresArticular ligamentsAuditoryAutomobile DrivingBehaviorBiomechanicsCellsChildChildhoodChinchilla (genus)ClinicalCommunicable DiseasesComputer SimulationConductive hearing lossCoupledDataDevelopmentDiagnosisDiagnostic testsDiseaseEarElementsEustachian TubeFrequenciesFunctional disorderGoalsHearingHolographyHumanIndividualInfectionInflammatoryJointsLasersLiquid substanceMastoid processMeasurementMeasuresMechanicsMembraneMethodsModelingMorphologyMuscle functionNamesOtitis MediaOtitis Media with EffusionOtoscopyPatientsPermeabilityPhysiciansPhysiologicalPlayPropertyResearchResearch Project GrantsRoleSeriesStructureStructure-Activity RelationshipSystemTechniquesTest ResultTestingThickTissue ModelTissuesTympanic membraneTympanometryVariantViscosityacoustic reflexbaseboneclinical applicationclinically relevanteffusionhearing impairmenthuman tissueimprovedmiddle earmiddle ear disordernovelpathogenpressureresponseround windowsoft tissuesoundstapedius muscletooltransmission processvibration
项目摘要
DESCRIPTION (provided by applicant): The middle ear, composed of ossicles and soft tissues including the tympanic membrane, ligaments, and joints plays a vital role in the transmission of sound and the sense of hearing. The mechanical properties of soft tissues change in middle ear diseases such as otitis media. As a consequence, the mobility of ossicular chain is reduced and significant conductive hearing loss occurs in otitis media ears. However, the mechanical property changes in soft tissue associated with disease are largely unstudied. It is almost impossible to identify mechanical changes of middle ear tissues in relation to hearing loss based on current clinical tools. The goal of this project is to characterize the biomechanical behaviors of soft tissues in normal and diseased ears, identify soft tissue changes which are associated with changes in normal hearing, and provide an improved 3-dimensional (3D) ear model to visualize and quantify structure-function relations in various diseases. Otitis media (OM) will be the primary focus for the project. Three specific aims are proposed: Aim 1: To Identify changes of mechanical properties of middle ear soft tissue in OM. We hypothesize that the change of mechanical properties of ear tissues in OM is related to morphological changes of the tissue in response to fluid, pressure, and duration of the OM. This hypothesis will be tested by comparison of measurement results of the ear tissues between normal and diseased ears in chinchillas using dynamic mechanical analyzer, split Hopkinson tension bar, acoustic driving with laser Doppler vibrometry (LDV), fringe Moiri system, and FE modeling of soft tissue. Aim 2: To quantify the effect of biomechanical changes of the middle ear on sound transmission in OM. It is hypothesized that the hearing loss in OM is caused by a combination of changes of ear tissues, fluid, and pressure in the middle ear. This hypothesis will be tested by measuring the ABR thresholds and the changes of middle ear transfer function and sound energy transmission in chinchilla OM ears with a novel theoretical analysis of fluid, pressure, and tissue properties with the aid of FE model of chinchilla ear to describe the mechanism of OM. Aim 3: To continue the development of our 3D FE model of the human ear with clinically-relevant applications. We will incorporate into the model with tissue properties determined in Aims 1 and 2, the microstructures of the TM and ISJ, and the stapedius muscle function. A FE model of pediatric ear will be created for studying OM in young children. The acoustic-mechanical vibration and energy transmission through the middle ear in diseased ears will be visualized and quantified in the 3D FE model by 4 novel model-derived "auditory test curves", named as: the middle ear transfer function (METF), energy absorbance (EA), admittance tympanogram (AT), and TM holography, which will assist physicians and audiologists to interpret the diagnostic test results and identify the specific type of middle ear disorders.
PUBLIC HEALTH RELEVANCE: Middle ear diseases often result in conductive hearing loss due to the changes of middle ear structure and soft tissue properties caused by the diseases. Understanding the relationship between the middle ear structural change and function of the middle ear will help diagnosis of different middle ear diseases. The proposed research project is to determine mechanical property changes in ear tissues associated with middle ear diseases and provide a computational model of the human ear to visualize and quantify structure-function relations in various diseases.
描述(申请人提供):中耳由小骨和鼓膜、韧带、关节等软组织组成,在声音的传递和听觉中起着至关重要的作用。中耳炎等中耳疾病中软组织的机械特性会发生变化。结果,听骨链的活动性降低,中耳炎耳发生显着的传导性听力损失。然而,与疾病相关的软组织机械性能变化在很大程度上尚未得到研究。根据现有的临床工具,几乎不可能识别与听力损失相关的中耳组织的机械变化。 该项目的目标是表征正常和患病耳朵中软组织的生物力学行为,识别与正常听力变化相关的软组织变化,并提供改进的 3 维 (3D) 耳朵模型来可视化和量化结构-各种疾病中的功能关系。中耳炎(OM)将是该项目的主要关注点。提出了三个具体目标: 目标 1:识别 OM 中中耳软组织机械特性的变化。我们假设 OM 中耳组织机械特性的变化与组织响应液体、压力和 OM 持续时间的形态变化有关。该假设将通过使用动态机械分析仪、分裂霍普金森张力杆、激光多普勒振动测量 (LDV) 声学驱动、边缘莫里系统和软体有限元建模来比较龙猫正常耳朵和患病耳朵的耳组织测量结果来检验。组织。目标 2:量化中耳生物力学变化对 OM 声音传输的影响。据推测,OM 的听力损失是由耳组织、液体和中耳压力的综合变化引起的。该假设将通过测量 ABR 阈值以及龙猫 OM 耳朵中耳传递功能和声能传输的变化,并借助流体、压力和组织特性的新颖理论分析,并借助龙猫耳朵的有限元模型来描述OM 机制。目标 3:继续开发具有临床相关应用的人耳 3D FE 模型。我们将把目标 1 和 2 中确定的组织特性、TM 和 ISJ 的微观结构以及镫骨肌功能纳入模型中。将创建小儿耳朵的有限元模型来研究幼儿的 OM。患病耳朵中耳的声学机械振动和能量传输将在 3D FE 模型中通过 4 条新颖的模型衍生的“听觉测试曲线”进行可视化和量化,命名为:中耳传递函数 (METF)、能量吸光度 (EA)、导纳鼓室图 (AT) 和 TM 全息术,这将帮助医生和听力学家解释诊断测试结果并识别中耳疾病的具体类型。
公共卫生相关性:中耳疾病通常会由于疾病引起的中耳结构和软组织特性的变化而导致传导性听力损失。了解中耳结构变化与中耳功能之间的关系有助于诊断不同的中耳疾病。拟议的研究项目是确定与中耳疾病相关的耳组织的机械特性变化,并提供人耳的计算模型,以可视化和量化各种疾病的结构功能关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONG Z GAN其他文献
RONG Z GAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONG Z GAN', 18)}}的其他基金
Biomechanical Measurement and Modeling of Normal and Diseased Middle Ears
正常和患病中耳的生物力学测量和建模
- 批准号:
8260378 - 财政年份:2011
- 资助金额:
$ 35.17万 - 项目类别:
Biomechanical Measurement and Modeling of Normal and Diseased Middle Ears
正常和患病中耳的生物力学测量和建模
- 批准号:
8475579 - 财政年份:2011
- 资助金额:
$ 35.17万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 35.17万 - 项目类别:
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 35.17万 - 项目类别:
Motion Robust Relaxometry for Infant Neuroimaging
用于婴儿神经影像的运动鲁棒松弛测量法
- 批准号:
10708164 - 财政年份:2022
- 资助金额:
$ 35.17万 - 项目类别:
Expanding articulatory information from ultrasound imaging of speech using MRI-based image simulations and audio measurements
使用基于 MRI 的图像模拟和音频测量来扩展语音超声成像的发音信息
- 批准号:
10537976 - 财政年份:2022
- 资助金额:
$ 35.17万 - 项目类别:
Motion Robust Relaxometry for Infant Neuroimaging
用于婴儿神经影像的运动鲁棒松弛测量法
- 批准号:
10583970 - 财政年份:2022
- 资助金额:
$ 35.17万 - 项目类别: