Optimization of the Chemical-Physical Environments for Stem Cell Differentiation
干细胞分化的化学物理环境的优化
基本信息
- 批准号:7976461
- 负责人:
- 金额:$ 18.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentBlood CellsBlood VesselsCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCell CountCell Culture TechniquesCell Differentiation processCell TherapyCellsChemicalsClinicalCollaborationsCommitCuesDevelopmentDevicesDifferentiation and GrowthElementsEnvironmentExtracellular MatrixExtracellular Matrix ProteinsFibroblast Growth FactorFoundationsGoalsGrowth FactorHealthcareHeartHeart failureHematological DiseaseHydrogelsIn VitroInvestigationKnowledgeLaboratoriesLifeLungMechanicsMethodsMorphogenesisMuscle RigidityPatientsPhysical environmentPlayProcessProductionPropertyProtein ArrayProtein MicrochipsProteinsProtocols documentationRegenerative MedicineResearchRoleScreening procedureSmooth Muscle MyocytesStagingStem cellsStretchingSystemTechnologyTestingTissue EngineeringTissuesTranslationsWA01 cell lineWA09 Cell Lineangiogenesiscell growthcell typecombinatorialdesignexperiencehuman embryonic stem cellimprovednovelpublic health relevancescaffoldscale upshear stressstem cell differentiationstem cell divisionstem cell fatetoolvasculogenesis
项目摘要
DESCRIPTION (provided by applicant): Pluripotent human embryonic stem cells (hESCs) can be differentiated in vitro into multiple cell types, including cardiovascular cells (cardiomyocytes, vascular endothelial and smooth muscle cells). The ability to control the growth and differentiation of stem cells in vitro is essential for the successful application of differentiated cells for cell-based therapies. The appropriate cell types committed to a desired lineage, together with the relevant elements of the cardiovascular system, can be used to treat cardiovascular diseases. The proposed research on the identification of the optimal condition for controlling hESC fate uses a novel medium-high throughput microarray platform composed of comprehensive chemical-physical microenvironments. These include (1) immobilized growth factors (GFs) and extracellular matrix proteins (ECMPs), (2) mechanical properties of the ECM, and (3) external mechanical forces acting on the cells. Current knowledge indicates that each of these parameters (i.e., GFs, ECMPs, substrate rigidities, as well as mechanical loadings) plays roles in regulating stem cell fate, but the efficiency is low when acting alone. Since stem cells experience the influence of multiple microenvironmental factors which change during the developmental stages, it is essential to examine the combinatory effects of multi-factorial complexities of the niches, as proposed in the current research. In the proposed research, we will investigate the combinatorial effects of ECM proteins (ECMPs) and GFs on the differentiation of hESCs (Federally approved WA01 and WA09 cell lines). We have designed a hydrogel system to control the rigidities of matrices, covering a range encountered in different tissues, for our ECMP array in stem cell culture. We will also incorporate the flow and stretch devices developed in our lab into the microarray system to assess the roles of external mechanical forces in regulating the cell fate of hESCs on the ECMP/GF/Rigidity platform. This novel combinatory microarray system allows the comprehensive testing of the chemical-physical microenvironment for the choice of optimal conditions for hESC growth and differentiation. The use of such optimally chosen hESCs for translation to cardiovascular tissue engineering will provide the opportunity to significantly advance the development of artificial vessels, angiogenesis patches, as well as cell replacement for heart failure, which will in turn improve the healthcare of patients with cardiovascular diseases and the wellbeing of our citizens.
PUBLIC HEALTH RELEVANCE: Pluripotent human embryonic stem cells can be differentiated into multiple cell types, including cells in the cardiovascular systems. The appropriate cell types with the associated networks of vascular cells can be used to treat heart, lung, and blood diseases. This project is aiming at developing a novel systematic approach to understand, define, and ultimately control the process of stem cell differentiation, with the ultimate goal of developing tools of regenerative medicine to treat cardiovascular diseases.
描述(申请人提供):多能人胚胎干细胞(hESC)可以在体外分化成多种细胞类型,包括心血管细胞(心肌细胞、血管内皮细胞和平滑肌细胞)。体外控制干细胞生长和分化的能力对于分化细胞成功应用于细胞疗法至关重要。适合所需谱系的细胞类型与心血管系统的相关元件一起可用于治疗心血管疾病。 所提出的确定控制 hESC 命运的最佳条件的研究使用了由综合化学物理微环境组成的新型中高通量微阵列平台。这些包括(1)固定化生长因子(GF)和细胞外基质蛋白(ECMP),(2)ECM的机械特性,以及(3)作用于细胞的外部机械力。目前的知识表明,这些参数(即 GF、ECMP、基质刚性以及机械负荷)中的每一个都在调节干细胞命运中发挥作用,但单独作用时效率较低。由于干细胞在发育阶段会受到多种微环境因素的影响,因此有必要研究当前研究中提出的生态位多因素复杂性的组合效应。在拟议的研究中,我们将研究 ECM 蛋白 (ECMP) 和 GF 对 hESC(联邦批准的 WA01 和 WA09 细胞系)分化的组合效应。我们为干细胞培养中的 ECMP 阵列设计了一种水凝胶系统来控制基质的刚性,涵盖不同组织中遇到的一系列刚性。我们还将把我们实验室开发的流动和拉伸装置整合到微阵列系统中,以评估外部机械力在 ECMP/GF/Rigidity 平台上调节 hESC 细胞命运的作用。这种新颖的组合微阵列系统可以对化学物理微环境进行全面测试,以选择 hESC 生长和分化的最佳条件。使用这种经过优化选择的hESCs转化为心血管组织工程将为显着促进人造血管、血管生成补片以及心力衰竭细胞替代的发展提供机会,从而改善心血管疾病患者的医疗保健以及我们公民的福祉。
公共健康相关性:多能人类胚胎干细胞可以分化成多种细胞类型,包括心血管系统细胞。具有相关血管细胞网络的适当细胞类型可用于治疗心脏、肺和血液疾病。该项目旨在开发一种新颖的系统方法来理解、定义和最终控制干细胞分化过程,最终目标是开发治疗心血管疾病的再生医学工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHU CHIEN其他文献
SHU CHIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHU CHIEN', 18)}}的其他基金
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10825307 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
- 批准号:
9922921 - 财政年份:2017
- 资助金额:
$ 18.57万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
9344559 - 财政年份:2015
- 资助金额:
$ 18.57万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
8988647 - 财政年份:2015
- 资助金额:
$ 18.57万 - 项目类别:
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10443151 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8615815 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
- 批准号:
10063534 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8787794 - 财政年份:2013
- 资助金额:
$ 18.57万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
8332732 - 财政年份:2012
- 资助金额:
$ 18.57万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
9403707 - 财政年份:2012
- 资助金额:
$ 18.57万 - 项目类别:
相似国自然基金
ZEB2介导的血管内皮生血化在人多能干细胞来源血细胞谱系发育中的作用研究
- 批准号:81870081
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
非造血细胞上CD47-TSP1信号对血管内皮细胞的调控及在小鼠心脏移植排斥反应中的作用
- 批准号:81671574
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
ELL在斑马鱼血细胞和血管发生中的生物学功能
- 批准号:30971667
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
冠心病中脂蛋白的生物学特性及其与多种人类细胞间的相互作用
- 批准号:30470347
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
血管形成调节因子对造血细胞生长分化作用的研究
- 批准号:39570357
- 批准年份:1995
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Increasing muscle mass resolves vascular dysfunction in obesity
增加肌肉质量可以解决肥胖症的血管功能障碍
- 批准号:
10679363 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
PREVENTING ALZHEIMER’S DISEASE-LIKE BRAIN PATHOLOGY IN HIV INFECTION BY TARGETING CCR5
通过靶向 CCR5 预防 HIV 感染中的阿尔茨海默病样脑部病变
- 批准号:
10700624 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Multi-omic Studies of Local and Systemic Immune Dysregulation in Rosacea
红斑痤疮局部和全身免疫失调的多组学研究
- 批准号:
10590784 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别:
Endothelial Dysfunction and Restoration in Trauma Induced Coagulopathy
创伤引起的凝血病中的内皮功能障碍和恢复
- 批准号:
10734818 - 财政年份:2023
- 资助金额:
$ 18.57万 - 项目类别: