Dynamic Networks and Mechanisms of Allosteric Communication in Proteins

蛋白质变构通讯的动态网络和机制

基本信息

  • 批准号:
    7933132
  • 负责人:
  • 金额:
    $ 9.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): How proteins regulate themselves is a fundamental question in biology. Regulation of protein activity drives cell division, metabolism, signal transduction, and therapeutic intervention. The most common and versatile regulatory proteins are allosteric proteins. Allosteric proteins are distinguished by their capacity to respond to ligand binding or chemical modification at one site, and alter ligand binding or activity at a distal site. Although many allosteric proteins have been characterized structurally, and models of allostery exist, most of the details of how allosteric transitions proceed remain unknown. The long-range goal of this research is to experimentally reveal the time-resolved structural processes that constitute allosteric function. Central to the approach to be taken is the idea that proteins are highly dynamic, especially allosteric proteins, and that dynamic motions are an essential component of allosteric conformational change. Classical oligomeric allosteric proteins are too large for in-depth studies of site-specific dynamics by NMR. Therefore, the monomeric, 14 kDa bacterial response regulator CheY protein will be used as a model allosteric domain. CheY is a chemotaxis signal transduction protein that, upon phosphorylation at Asp-57, undergoes a conformational change at a distal surface that modulates binding to the flagellar motor. The ps-ns and ¿s-ms timescale dynamics of CheY will be extensively characterized in the absence and presence of phosphoryl group mimic, BeF3-, using NMR relaxation methods. In separate experiments, long-range thermodynamic couplings will be mapped using high-throughput methodology. Because, recently, long-range communication has been observed in proteins that are not functionally allosteric, mechanisms similar to those in allosteric proteins may exist in non-allosteric proteins, albeit to a lesser extent. The serine protease inhibitor eglin c is a good example of this: conservative mutations in eglin c lead to long-range dynamic effects in the absence of structural change. In the proposed research, four Specific Aims fall into two main thrusts. In the first thrust, patterns of long-range coupling (or "communication") - both dynamic and thermodynamic - will be compared between the non-allosteric eglin c and the allosteric CheY. These comparisons will shed light on any basic differences in coupling networks between allosteric and non-allosteric proteins; they will also provide a test of the role of dynamics in mediating thermodynamic coupling. In the second thrust, the mechanism of intramolecular signal transduction in CheY will be investigated from an NMR dynamics perspective, using CheY's various biological states and mutations that modulate its activity. Overall, by increasing understanding of the biophysical properties and role of dynamics in allostery, this research will help to lay the foundation for the rational design of allosteric proteins and drugs. PUBLIC HEALTH RELEVANCE: Allosteric conformational change in proteins lies at the heart of regulatory processes such as cell division, metabolism, signal transduction, and drug action. This research seeks to understand the dynamic underpinnings of allostery by experimentally contrasting motional dynamics in non-allosteric and allosteric proteins. The small bacterial signal transduction protein CheY will serve as a model allosteric domain. A detailed understanding of allosteric mechanisms will be needed to rationally design proteins and drugs that take advantage of allosteric principles, as well as understand mechanisms of drug resistance.
描述(由申请人提供):蛋白质如何调节自身是生物学中的一个基本问题。最常见和最通用的调节蛋白是变构蛋白。尽管许多变构蛋白已经在结构上得到了表征,并且存在变构模型,但大多数变构细节是如何变构的。这项研究的长期目标是通过实验揭示构成变构功能的时间分辨结构过程,所采取的方法的核心是蛋白质,尤其是变构蛋白质,并且是高度动态的。动态运动是变构构象变化的重要组成部分,经典的寡聚变构蛋白对于通过 NMR 进行位点特异性动力学的深入研究来说太大,因此,将使用单体 14 kDa 细菌反应调节蛋白 CheY。 CheY 是一种趋化信号转导蛋白,在 Asp-57 磷酸化后,其远端表面发生构象变化,调节与鞭毛运动的结合。 CheY 的 s-ms 时间尺度动力学将使用 NMR 弛豫方法在磷酰基模拟物 BeF3- 不存在和存在的情况下进行表征,最近将使用高通量方法广泛绘制长程热力学耦合。 ,在非功能性变构蛋白中观察到长程通讯,与变构蛋白类似的机制可能存在于非变构蛋白中,尽管程度较小。 c 就是一个很好的例子:eglin c 的保守突变在没有结构变化的情况下会导致长期动态效应。在拟议的研究中,四个具体目标分为两个主要推力,即长期模式。范围耦合(或“通讯”)——动态和热力学——将在非变构eglin c和变构CheY之间进行比较,这些比较将揭示变构和非变构蛋白质之间的耦合网络的任何基本差异;还将提供对动力学在介导热力学耦合中的作用的测试,在第二个推力中,将从 NMR 动力学角度研究 CheY 的分子内信号转导机制,利用 CheY 的各种生物状态和总体上调节其活性的突变。通过加深对变构动力学的生物物理特性和作用的了解,这项研究将有助于为变构蛋白和药物的合理设计奠定基础。 公共健康相关性:变构构象变化。蛋白质是细胞分裂、代谢、信号转导和药物作用等调节过程的核心,本研究旨在通过实验对比非变构蛋白和变构蛋白的运动动力学来了解变构的动态基础。蛋白质 CheY 将作为变构结构域模型,需要详细了解变构机制,以合理设计利用变构原理的蛋白质和药物,并了解耐药机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew L Lee其他文献

Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate
前列腺质子放射治疗中不透射线基准标记的剂量影响的蒙特卡罗模拟
  • DOI:
    10.1088/0031-9155/52/11/001
  • 发表时间:
    2007-06-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    W. Newhauser;J. Fontenot;N. Koch;L. Dong;Andrew L Lee;Yuanshui Zheng;L. Waters;R. Mohan
  • 通讯作者:
    R. Mohan
Comparison of surface doses from spot scanning and passively scattered proton therapy beams
点扫描和被动散射质子治疗束表面剂量的比较
  • DOI:
    10.1088/0031-9155/54/14/n02
  • 发表时间:
    2009-07-21
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    B. Arjomandy;N. Sahoo;J. Cox;Andrew L Lee;M. Gillin
  • 通讯作者:
    M. Gillin
Assessing the impact of an alternative biochemical failure definition on radiation dose response for high-risk prostate cancer treated with external beam radiotherapy.
评估替代生化失败定义对采用外照射放射治疗的高危前列腺癌的辐射剂量反应的影响。
Spot scanning proton beam therapy for prostate cancer: treatment planning technique and analysis of consequences of rotational and translational alignment errors.
前列腺癌点扫描质子束治疗:治疗计划技术以及旋转和平移对准误差后果分析。
Utility of the percentage of positive prostate biopsies in predicting PSA outcome after radiotherapy for patients with clinically localized prostate cancer.
前列腺活检阳性百分比在预测临床局限性前列腺癌患者放疗后 PSA 结果中的效用。

Andrew L Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew L Lee', 18)}}的其他基金

Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10338723
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Equipment Supplement to Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能机制和动力学的设备补充
  • 批准号:
    10669454
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Request for a 500 MHz NMR console and nitrogen-cooled cryoprobe
请求 500 MHz NMR 控制台和氮冷冷冻探头
  • 批准号:
    10440662
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10691713
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10653812
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10372370
  • 财政年份:
    2019
  • 资助金额:
    $ 9.76万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10021672
  • 财政年份:
    2019
  • 资助金额:
    $ 9.76万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10216306
  • 财政年份:
    2019
  • 资助金额:
    $ 9.76万
  • 项目类别:
The Role of Dynamics in Enzyme Mechanism and Inhibition
动力学在酶机制和抑制中的作用
  • 批准号:
    8988574
  • 财政年份:
    2008
  • 资助金额:
    $ 9.76万
  • 项目类别:
The Role of Dynamics in Enzyme Mechanism and Inhibition
动力学在酶机制和抑制中的作用
  • 批准号:
    8437974
  • 财政年份:
    2008
  • 资助金额:
    $ 9.76万
  • 项目类别:

相似国自然基金

基于钙敏感受体的不同激活状态进行多肽变构调节剂筛选以及结构导向的化学修饰改造
  • 批准号:
    22307113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
P2X3靶向的无味觉失调的变构调节新策略及用于缓解原因未明难治性咳嗽的新分子发现
  • 批准号:
    32371289
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
GABAB受体复合体变构调节的生理和病理研究
  • 批准号:
    32330049
  • 批准年份:
    2023
  • 资助金额:
    221 万元
  • 项目类别:
    重点项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
  • 批准号:
    82371524
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于CaSR变构调节探讨大米蛋白肽-钙复合物改善肠上皮屏障功能的机制研究
  • 批准号:
    32360576
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

O-GlcNac Modulation of GABAergic Transmission
O-GlcNac 对 GABA 能传输的调节
  • 批准号:
    10754746
  • 财政年份:
    2023
  • 资助金额:
    $ 9.76万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10338723
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Peripheral and Central Pathways of α3 Glycine Receptors as Non-Opioid Molecular Targets to Treat Pain
α3 甘氨酸受体的外周和中枢通路作为非阿片类药物分子靶点治疗疼痛
  • 批准号:
    10445387
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
  • 批准号:
    10406129
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Tuning PARP-1 retention and release on DNA breaks
调节 DNA 断裂时 PARP-1 的保留和释放
  • 批准号:
    10581522
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了