Predicting post-kidney transplant dementia/Alzheimer's Disease risk in older patients
预测老年患者肾移植后痴呆/阿尔茨海默氏病的风险
基本信息
- 批准号:10751734
- 负责人:
- 金额:$ 8.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-02 至 2026-08-01
- 项目状态:未结题
- 来源:
- 关键词:AgeAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease riskCalibrationCessation of lifeClassificationClinicalCognitiveCohort StudiesCommunitiesConsensusCox Proportional Hazards ModelsDataDementiaDevelopmentDiagnosisDialysis procedureDiscriminationDoctor of PhilosophyElderlyEnd stage renal failureEpidemiologic MethodsEthnic OriginEvaluationEventFacultyFundingGoalsHabilitationHybridsImpaired cognitionIncidenceInstructionInterventionKidney DiseasesKidney TransplantationLearningLongitudinal cohort studyMachine LearningMeasuresMedical HistoryMentorshipMethodsModelingOutcomeOutcomes ResearchPatientsPharmaceutical PreparationsRaceRecording of previous eventsResearchRiskRisk FactorsScientistSelf CareSubgroupSurgeonTechniquesTestingTimeTrainingTransplant RecipientsTransplantationUnited States National Institutes of HealthValidationVascular Dementiacognitive functioncohortcomorbiditydementia riskdepressive symptomsdesignexperiencefollow-upfrailtyfunctional disabilityhigh riskimprovedinterestmedication nonadherencemixed dementiamortality riskneurocognitive testnovelnutritionolder patientpost-transplantpost-transplant diseasepredictive modelingpredictive toolsprospectiverecruitrisk predictionscreeningsexskillstooltransplant centers
项目摘要
PROJECT SUMMARY/ABSTRACT
Kidney transplantation (KT) is increasing for older adults (≥50) with ESRD. In 2021, older adults received
roughly 60% of all KTs and are at increased risk of dementia/Alzheimer’s disease (AD). KT recipients who
develop dementia/AD post-transplant have a 2.4-fold increased risk of mortality and a 1.5-fold increased risk of
graft loss. Of older KT recipients who are diagnosed with dementia/AD, 88.6% die within 10 years. These
deaths may be due to inability to perform self-care, inadequate nutrition, or medication non-adherence.
Despite these risks, predicting who will develop post KT dementia/AD is not part of pre-KT evaluation.
Furthermore, factors routinely measured at pre-KT evaluation (age, sex, comorbidities, etc.) have only
moderate predictive power for post-KT dementia/AD. Predicting post-KT dementia/AD risk can help identify
older candidates who would benefit from interventions such as cognitive prehabilitation or post-KT surveillance.
Predicting post-KT dementia/AD risk at transplant evaluation provides enough time to intervene prior to KT.
To design a geriatric-specific model that can predict post-KT dementia/AD risk utilizing machine learning, we
will leverage an ongoing NIA-funded R01 prospective longitudinal cohort study of frailty among older KT
candidates to accomplish the following aims: (1) To identify dementia/AD cases and possible subtypes among
KT recipients and quantify the cumulative incidence of AD/dementia in KT recipients in this ongoing cohort
study; (2) To identify clinical, geriatric, and ESRD-specific risk factors that are associated with post-KT
dementia/AD; and (3) To design a model with the aid of machine learning that successfully predicts the risk of
post-KT dementia/AD in older patients undergoing KT evaluation. Our group’s expertise in frailty and
dementia/AD and access to the ongoing Frailty Assessment in Renal Disease (FAIR) cohort, along with Dr.
Long’s training interests in machine learning and regression, provide a unique opportunity to build prediction
models that could identify older candidates at highest risk of post-KT dementia/AD.
We hypothesize that a risk prediction tool that incorporates traditional clinical, geriatric, and ESRD-specific risk
factors that are commonly measured at KT evaluation, will improve post-KT dementia/AD risk prediction. If the
proposed aims are achieved, we will improve our ability to identify older patients at increased risk of developing
post-KT dementia/AD, who will need additional interventions to improve post-KT outcomes.
项目概要/摘要
患有 ESRD 的老年人(≥ 50 岁)接受肾移植 (KT) 的比例不断增加 2021 年,接受肾移植的老年人数量不断增加。
大约 60% 的 KT 接受者患痴呆/阿尔茨海默病 (AD) 的风险较高。
移植后发生痴呆/AD 的死亡风险增加 2.4 倍,罹患痴呆症的风险增加 1.5 倍
在被诊断患有痴呆/AD 的老年 KT 接受者中,88.6% 会在 10 年内死亡。
死亡可能是由于无法自我护理、营养不足或不遵守药物治疗造成的。
尽管存在这些风险,预测谁会患上 KT 后痴呆/AD 并不是 KT 前评估的一部分。
此外,KT 前评估中常规测量的因素(年龄、性别、合并症等)仅影响
对 KT 后痴呆/AD 的中等预测能力有助于识别 KT 后痴呆/AD 风险。
老年候选人将受益于认知预康复或 KT 后监测等干预措施。
在移植评估中预测 KT 后痴呆/AD 风险为 KT 之前的干预提供了足够的时间。
为了设计一个可以利用机器学习预测 KT 后痴呆/AD 风险的老年人特异性模型,我们
将利用正在进行的 NIA 资助的 R01 前瞻性纵向队列研究,研究老年 KT 的虚弱状况
候选人实现以下目标:(1)确定痴呆/AD病例和可能的亚型
KT 接受者并量化该持续队列中 KT 接受者 AD/痴呆的累积发病率
研究;(2) 确定与 KT 后相关的临床、老年和 ESRD 特异性危险因素
(3) 借助机器学习设计一个模型,成功预测痴呆症/AD 的风险
接受 KT 评估的老年患者的 KT 后痴呆/AD。
痴呆症/AD 以及参与正在进行的肾病虚弱评估 (FAIR) 队列,以及 Dr.
Long 对机器学习和回归的培训兴趣为构建预测提供了独特的机会
可以识别 KT 后痴呆/AD 风险最高的老年候选人的模型。
我们发现了一种风险预测工具,它结合了传统的临床、老年和 ESRD 特定风险
在 KT 评估中通常测量的因素将改善 KT 后痴呆/AD 风险预测。
如果实现了拟议的目标,我们将提高识别老年患者患病风险增加的能力
KT 后痴呆/AD,需要额外的干预措施来改善 KT 后的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane J Long其他文献
Frailty, but not cognitive impairment, improves mortality risk prediction among those with chronic kidney disease—a nationally representative study
虚弱而非认知障碍可以改善慢性肾病患者的死亡风险预测——一项全国代表性研究
- DOI:
10.1186/s12882-024-03613-y - 发表时间:
2024-05-22 - 期刊:
- 影响因子:2.3
- 作者:
Jingyao Hong;Nadia M. Chu;Samuel G Cockey;Jane J Long;Nicolai Cronin;Nidhi Ghildayal;Rasheeda K. Hall;Megan Huisingh;Jennifer Scherer;Dorry L. Segev;Mara McAdams - 通讯作者:
Mara McAdams
Jane J Long的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 8.78万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 8.78万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 8.78万 - 项目类别: