ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System

ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法

基本信息

  • 批准号:
    10753675
  • 负责人:
  • 金额:
    $ 115.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Alzheimer's disease and related dementias (AD/ADRD) are the most common neurodegenerative brain disease and characterized by massive loss of memory and learning. AD/ADRD affects more than 6 million Americans and puts a heavy burden on caregivers in society. However, effective treatment of AD/ADRD is still lacking. While randomized clinical trials (RCT) can provide reliable evidence on the effectiveness of interventions, they also have inherent limitations including high cost and long execution time. In addition, RCTs usually are conducted on selected populations and in specialized environments with limited follow up time. Therefore, they could have limitations in generalizability to real-world clinical practice. Clinical trial simulation is becoming an effective approach to assess feasibility, investigate assumptions, and refine study protocols before conducting the actual trials. Increased availability and granularity of real-world data (RWD) such as electronic health record (EHR) and medical claims data along with advances in data science offer untapped opportunities to leverage RWD for trial simulation studies to generate real world evidence (RWE). Nevertheless, there are methodological barriers and informatics challenges in supporting RWD-based trial simulation studies, especially for AD: (1) clinical trials need to be represented using a formal and standard approach (i.e., ontologies) to capture the entire scope of a trial, especially eligibility criteria and outcome measures (i.e., both effectiveness and safety); (2) such formal and standard representation needs to be made interoperable with RWD standards (e.g., common data models) to identify study cohorts and relevant, important patient characteristics (i.e., via computable phenotypes and natural language processing [NLP] methods as rich AD-related information such as cognitive scores often exist in unstructured clinical notes); and (3) comprehensive and reusable pipelines need to be implemented that can seamlessly align with existing large-scale RWD for generating high-quality analytic-ready datasets for AD clinical trial simulation studies. To address these barriers, we propose create and pilot test the ACTS (Alzheimer's disease Clinical Trial Simulation) system, leveraging three large collections of RWD (~20 million patients from the OneFlorida network, UT Physician Clinical Data Research Warehouse, and the Optum’s Clinformatics data). Specifically, we propose to develop novel informatics approaches to represent the entirety of AD trials while considering the connection of RWD (Aim 1), to use both structured and unstructured RWD to develop robust phenotyping algorithms that will render previously incomputable AD study traits computable (Aim 2), and to develop the ACTS web application, which will provide an integrated environment for AD researchers to construct virtual AD trials using an interactive web interface and obtain analytic-ready datasets for trial simulation studies (Aim 3).
抽象的 阿尔茨海默病和相关痴呆(AD/ADRD)是最常见的神经退行性脑部疾病 AD/ADRD 影响着超过 600 万美国人。 然而,AD/ADRD 的有效治疗仍然缺乏。 虽然随机临床试验 (RCT) 可以提供干预措施有效性的可靠证据,但它们 此外,随机对照试验也存在固有的局限性,包括成本高和执行时间长。 因此,他们在特定的环境中对选定的人群进行了有限的随访。 临床试验模拟正在成为一种普遍适用于现实世界临床实践的方法。 在进行研究之前评估可行性、调查假设和完善研究方案的有效方法 提高真实世界数据(RWD)的可用性和粒度,例如电子健康记录。 (EHR) 和医疗索赔数据以及数据科学的进步提供了尚未开发的机会 RWD 用于生成真实世界证据的试验模拟研究 (RWE) 尽管如此,还是有方法论的。 支持基于 RWD 的试验模拟研究的障碍和信息学挑战,特别是 AD:(1) 临床试验需要使用正式和标准的方法(即本体论)来表示,以捕获整个临床试验 试验范围,特别是资格标准和结果衡量标准(即有效性和安全性);(2) 正式和标准的表示需要与 RWD 标准互操作(例如,通用数据 模型)来识别研究队列和相关的重要患者特征(即通过可计算的表型) 和自然语言处理 [NLP] 方法作为丰富的 AD 相关信息,例如认知分数 (3) 需要实施综合且可重复使用的管道 可以与现有的大规模 RWD 无缝对接,为 AD 生成高质量的分析就绪数据集 为了解决这些障碍,我们建议创建并试点测试 ACTS。 (阿尔茨海默病临床试验模拟)系统,利用三大 RWD 集合(约 2000 万 来自 OneFlorida 网络、UT 医师临床数据研究仓库和 Optum 的患者 具体来说,我们建议开发新的信息学方法来代表整体 AD 试验同时考虑 RWD 的连接(目标 1),使用结构化和非结构化 RWD 来 开发强大的表型分析算法,使以前无法计算的 AD 研究性状变得可计算(目标 2)、开发ACTS网络应用程序,为AD研究人员提供集成环境 使用交互式 Web 界面构建虚拟 AD 试验并获取可供分析的试验数据集 模拟研究(目标 3)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiang Bian其他文献

Jiang Bian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiang Bian', 18)}}的其他基金

Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
  • 批准号:
    10699171
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
  • 批准号:
    10699171
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
  • 批准号:
    10608470
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
  • 批准号:
    10682237
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
  • 批准号:
    10751275
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
  • 批准号:
    10728800
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
  • 批准号:
    10590413
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
  • 批准号:
    10752848
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
  • 批准号:
    10368562
  • 财政年份:
    2022
  • 资助金额:
    $ 115.53万
  • 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
  • 批准号:
    10677539
  • 财政年份:
    2022
  • 资助金额:
    $ 115.53万
  • 项目类别:

相似海外基金

Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
  • 批准号:
    10643145
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Pathogenic T cells in discoid lupus erythematosus
盘状红斑狼疮中的致病性 T 细胞
  • 批准号:
    10664134
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Ion Mobility Spectrometry- quadrupole Time-of-Flight (IMS-qToF) Mass Spectrometer
离子淌度光谱仪 - 四极杆飞行时间 (IMS-qToF) 质谱仪
  • 批准号:
    10630627
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
  • 批准号:
    10661884
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
  • 批准号:
    10663605
  • 财政年份:
    2023
  • 资助金额:
    $ 115.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了