Large-scale calcium and voltage imaging to illuminate neural mechanisms of visual experience
大规模钙和电压成像阐明视觉体验的神经机制
基本信息
- 批准号:10753172
- 负责人:
- 金额:$ 7.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-10 至 2026-09-09
- 项目状态:未结题
- 来源:
- 关键词:AddressAgreementAnestheticsAnimal BehaviorAnimal ModelAppearanceAreaBehavior ControlBehavioralBehavioral AssayBiological AssayBrainBrain StemCalciumCellsCerebral hemisphereClozapineComaCommunicationComplexConsciousConsciousness DisordersConsensusDataDecision MakingDetectionDiseaseEmerging TechnologiesEventFeedbackGeneral AnesthesiaGenetic TechniquesGoalsHallucinationsHealthImageImaging TechniquesIndividualInjectionsLaboratory miceLifeLinkMachine LearningMacular degenerationMedicalMicroscopeMicroscopicModalityMusNatureNeuronsOperative Surgical ProceduresOptical IllusionsOpticsOutcomeOxidesParietal LobePatientsPatternPerceptionPhotonsPlayProcessPropertyPsychometricsPulvinar structureRecurrenceReportingResearchResolutionRetinaRiskRodentRoleSensorySignal TransductionSpecificityStimulusStrokeStructureStudy modelsSyndromeSystemTechniquesTechnologyTestingThalamic NucleiThalamic structureTimeTrainingTransgenic MiceTraumaTrauma patientVisionVisualVisual CortexVisual PerceptionWorkarea striatacell typedesigndesigner receptors exclusively activated by designer drugsexperienceextrastriate visual cortexgenetic manipulationhippocampal pyramidal neuroninstrumentinstrumentationmouse modelneuralneuroimagingneuromechanismnew technologypreventsensory mechanismspatial neglectsynthetic drugtheoriesvisual stimulusvoltage
项目摘要
Project Summary:
The majority of lived experience depends on neural activity conveying sensory information about the world.
Neural trauma and stroke are leading causes of disorders such as coma and spatial neglect, which severely
damage visual experience, and there are no viable treatment options. Similarly, life saving medical treatments
depend on the ability for general anesthesia to temporarily disconnect patients from the sensory world. Current
anesthetics do so by inhibiting the entire brain, including the brainstem, which is a significant health risk. Even
so, for unknown reasons, general anesthesia sometimes fails to prevent experiences during surgery, resulting
in severe trauma for patients. These problems persist, creating negative health outcomes, in part because
despite substantial research into the mechanisms of sensory encoding, particularly in vision, it remains unclear
how neural activity transforms sensory information into conscious experience. There are many theories, each
suggesting different mechanisms. Visual experience may emerge from the activity of higher-order neural
ensembles, or depend on hidden, complex interactions built into network structures. Experience may involve
local, recurrent network interactions, long-range computations, or global events that subsume and unify network
activity. Unfortunately, concrete evidence supporting any of these theories is limited. Existing technologies lack
either the specificity to identify the microscopic encoding properties of individual neurons and subtypes, or the
necessary scope to detect activity simultaneously across sizable visual networks. New emerging technology in
the Schnitzer lab overcomes these technical limitations. Advanced microscopes and complimentary optical
techniques now make it possible to simultaneously record thousands of neurons across the entire visual network,
with Ca2+ imaging revealing activity related to neural firing, and voltage imaging revealing subthreshold wave
dynamics associated with neural communication. In this project, we will 1.) develop a task designed to isolate
visual experience in mouse models to optimize the benefits of neural recording techniques; 2.) use state-of-the-
art optical instrumentation to resolve the dynamics of thousands of individual neurons of specific types across
all visual cortical areas, characterizing activity patterns that differentiate seen from unseen percepts; 3) use
chemogenetic manipulations to test mechanisms of perception by inhibiting the pulvinar, a subcortical area that
modulates visual networks. The results of this work, as preliminary data supports, will reveal detailed evidence
of neural mechanisms associated with conscious visual perception that can differentiate predictions made by
current theories. This will drive the field towards a data-driven consensus and illuminate mechanisms that will
be instrumental in treating disorders.
项目概要:
大多数生活经验取决于传递有关世界的感官信息的神经活动。
神经创伤和中风是昏迷和空间忽视等疾病的主要原因,这些疾病严重影响
损害视觉体验,并且没有可行的治疗方案。同样,挽救生命的医疗
取决于全身麻醉暂时断开患者与感官世界的能力。当前的
麻醉剂通过抑制包括脑干在内的整个大脑来实现这一点,这是一个重大的健康风险。甚至
因此,由于未知的原因,全身麻醉有时无法避免手术期间的经历,从而导致
在对患者造成严重创伤时。这些问题持续存在,造成负面健康结果,部分原因是
尽管对感觉编码机制(特别是视觉)进行了大量研究,但仍不清楚
神经活动如何将感官信息转化为意识体验。理论有很多种,每种都有
提出不同的机制。视觉体验可能源自高阶神经元的活动
集成,或依赖于网络结构中内置的隐藏的、复杂的交互。经验可能涉及
本地、循环网络交互、远程计算或包含和统一网络的全局事件
活动。不幸的是,支持这些理论的具体证据都很有限。现有技术缺乏
识别单个神经元和亚型的微观编码特性的特异性,或者
跨相当大的视觉网络同时检测活动的必要范围。新兴技术在
施尼策实验室克服了这些技术限制。先进的显微镜和免费光学
现在的技术可以同时记录整个视觉网络中的数千个神经元,
Ca2+ 成像揭示与神经放电相关的活动,电压成像揭示阈下波
与神经通讯相关的动力学。在这个项目中,我们将 1.) 开发一个旨在隔离的任务
小鼠模型的视觉体验,以优化神经记录技术的优势; 2.)使用最先进的
艺术光学仪器可解析跨区域数千个特定类型单个神经元的动态
所有视觉皮层区域,表征区分可见知觉和不可见知觉的活动模式; 3)使用
化学遗传学操作通过抑制枕丘来测试感知机制,枕丘是皮质下区域,
调节视觉网络。这项工作的结果,作为初步数据的支持,将揭示详细的证据
与有意识的视觉感知相关的神经机制可以区分由
当前的理论。这将推动该领域达成数据驱动的共识,并阐明机制
有助于治疗疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Jordan Redinbaugh其他文献
Michelle Jordan Redinbaugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
混洗相关基础协议及应用
- 批准号:62302118
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环回差分相位量子密钥分发协议的实际安全性研究
- 批准号:12304563
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多中心属性密码的分布式随机数协议研究
- 批准号:62302129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理设备与通信信道特征融合的协同内生安全模型及协议
- 批准号:62361010
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
IMPACCT: Infrastructure for Musculoskeletal Pediatric Acute Care Clinical Trials
IMPACCT:肌肉骨骼儿科急性护理临床试验的基础设施
- 批准号:
10684924 - 财政年份:2021
- 资助金额:
$ 7.41万 - 项目类别:
IMPACCT: Infrastructure for Musculoskeletal Pediatric Acute Care Clinical Trials
IMPACCT:肌肉骨骼儿科急性护理临床试验的基础设施
- 批准号:
10684924 - 财政年份:2021
- 资助金额:
$ 7.41万 - 项目类别:
Repeated Ketamine Treatment to Accelerate Efficacy of Prolonged Exposure in PTSD
重复氯胺酮治疗可提高 PTSD 患者长期接触氯胺酮的疗效
- 批准号:
10578751 - 财政年份:2021
- 资助金额:
$ 7.41万 - 项目类别:
Rational polytherapy in the treatment of cholinergic seizures
胆碱能性癫痫发作的合理综合治疗
- 批准号:
8526584 - 财政年份:2011
- 资助金额:
$ 7.41万 - 项目类别:
Rational polytherapy in the treatment of cholinergic seizures
胆碱能性癫痫发作的合理综合治疗
- 批准号:
8732710 - 财政年份:2011
- 资助金额:
$ 7.41万 - 项目类别: