Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
基本信息
- 批准号:7812177
- 负责人:
- 金额:$ 27.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAllergicAnimalsAnoxiaAntibodiesApoptosisArteriesArtsAttenuatedBacteriaBasic Amino Acid Transport SystemsBindingBinding SitesBiologicalBloodBlood CirculationBlood PlateletsBrush BorderBypassCell physiologyCellsClinicalClinical TrialsCoinComplementConsensusCytoplasmic TailDefectDevelopmentDigestionE-CadherinEndothelial CellsEndotheliumEndotoxinsEnzymesEpithelialEpithelial CellsEpitheliumEventExposure toExtracellular DomainFailureFamilyFamily suidaeFeasibility StudiesFunctional disorderGenerationsGreater sac of peritoneumHemorrhagic ShockHepaticHourHumanHypoxiaImmunosuppressionIn VitroIndividualInflammationInflammation MediatorsInflammatoryInjuryInsulin ReceptorInsulin ResistanceInterventionIntestinesIschemiaKnowledgeLeadLeukocytesLightLipaseLipidsLiverLocationLungLymphaticMeasurementMeasuresMediator of activation proteinMedicalMembraneMesenteryMetabolicMicrocirculationMolecularOrganOrgan failurePancreasPancreatic enzymePathogenesisPathologicPathway interactionsPeptide HydrolasesPerfusionPeripheralPeritoneal FluidPeritoneumPermeabilityPhasePhysiologicalPlasmaPlayPreparationPreventionProcessProductionProtease InhibitorProteinsRattusReactionResearchRoleSerine ProteaseSerous MembraneShockSourceStagingSubmucosaSymptomsTechniquesTestingTight JunctionsTimeTissuesToxic Shock SyndromeVascular Endothelial Growth Factor Receptor-1Vascular Endothelial Growth Factor Receptor-2VenousWeight GainWorkartery occlusionbasecadherin 5cell injurycytokinecytotoxiceffective interventionextracellularimprovedin vivoinhibitor/antagonistinterstitialintestinal epitheliumjunctional adhesion moleculemortalitynovel strategiesoccludinpre-clinicalpreclinical studypreventpublic health relevancereceptorreconstitutionresearch studyseptictherapy development
项目摘要
DESCRIPTION (provided by applicant): Physiological shock and multi-organ failure is one of the most important medical problems with high mortality. A powerful inflammatory cascade accompanies shock, but there is no consensus for the trigger mechanisms of the inflammation. It is our long-term objective to identify the origin of the inflammation in shock and develop new interventions to minimize the inflammation and multi-organ failure. We recently developed a new line of research that has served to identify pancreatic digestive enzymes in the intestine as key players in shock. This family of enzymes is usually restricted to the lumen of the intestine as part of normal digestion. The digestive enzymes are present in comparatively high concentrations as part of normal digestion, capable to degrade most biological molecules and entire tissues within hours. Under normal circumstances, the digestive enzymes are retained within the lumen of the intestine by the mucosal barrier. But under conditions of shock, the same digestive enzymes are transported from the lumen into the wall of the intestine. Once inside the wall, they initiate an auto-digestion process with release of pancreatic enzymes as well as inflammatory digestive products into the central circulation where they cause cell injury and multi-organ failure. We obtained preliminary evidence to indicate that blockade of the digestive enzymes in the lumen of the intestine dramatically reduces the production of inflammatory mediators and significantly improves survival after severe forms of shock. It is our hypothesis that in hemorrhagic shock the protective barrier normally provided by the brush border epithelium is compromised and allows access of preexisting digestive enzymes into interstitial tissue in the wall of the intestine. The digestive enzymes are carried through multiple pathways into the central circulation where they cause microvascular inflammation and major cell dysfunctions by enzymatic cleavage of membrane receptors, e.g. cleavage of the extracellular domain of tight junction proteins and irreversible elevation of epithelial and endothelial permeability or cleavage of the extracellular binding site of the insulin receptor and insulin resistance. Blockade of the pancreatic enzymes and temporary prevention of digestion in the lumen of the intestine serves to prevent inflammation and reduces mortality due to multi-organ failure. Thus we propose to investigate the following three important Specific Aims: 1. Determine in hemorrhagic shock the activity and transport of the pancreatic digestive enzymes from the lumen of the intestine along multiple pathways into the peripheral microcirculation and the level of the associated microvascular inflammatory reaction. 2. Determine by enzyme blockade in the lumen of the intestine the role of pancreatic digestive enzymes in generation of inflammatory and cytotoxic mediators and in long-term survival after hemorrhagic shock. 3. Measure the level of extracellular receptor cleavage by proteases associated with failure of tight junctions and loss of key cell functions during the early stage of shock. These studies will determine the mechanisms for the origin of the powerful cell and organ injury mechanisms in shock. We will test a new form of intervention against the high mortality in shock that may have clinical utility. PUBLIC HEALTH RELEVANCE: The overall objective of this research is to develop a new intervention against inflammation and cell injury in shock and multi-organ failure, one of the most important problems in terms of mortality. The work is based on the new hypothesis, that in shock the pancreatic digestive enzymes play a central role in the development of inflammation, cell dysfunction and organ failure. These extraordinary powerful digestive enzymes are usually retained in the lumen of the intestine as part of normal digestion and they are prevented from entry into the wall of the intestine by the mucosal barrier. But under conditions of ischemia in the intestine and shock, the mucosal barrier becomes permeable and enzymes pass across the mucosal epithelium into the wall of the intestine and from there into other tissue compartments where they rapidly auto-digest healthy tissue. We provide preliminary evidence that blockade of digestive enzymes in the lumen of the intestine is highly effective to reduce inflammation in diverse forms of shock. But little is known about the details of the transport and the action of pancreatic digestive enzymes under shock conditions in order to optimize blockade of the digestive enzymes. In this project we will determine quantitatively with a new microzymographic technique in hemorrhagic shock the transport of digestive enzymes across the intestinal epithelium into the wall of the intestine, into lymphatics, the peritoneal fluid and into the peripheral microcirculation. We will determine to what degree blockade of the digestive enzymes in the lumen of the intestine reduces mortality in shock. Furthermore we will investigate a new hypothesis for the acute cell dysfunctions in shock in form of receptor cleavage by digestive proteases, e.g. cleavage of tight junction proteins as a mechanisms to cause irreversible increase in epithelial or endothelial permeability or insulin resistance due to cleavage of the extracellular domain of insulin receptors. This research will provide essential information for development of a new intervention against multi-organ failure by transient blockade of the pancreatic digestive enzymes.
描述(由申请人提供):生理休克和多器官衰竭是最重要的医学问题之一,死亡率很高。休克伴随着强大的炎症级联反应,但对于炎症的触发机制尚未达成共识。我们的长期目标是确定休克炎症的根源并开发新的干预措施以尽量减少炎症和多器官衰竭。我们最近开展了一系列新的研究,旨在确定肠道中的胰腺消化酶是休克的关键因素。作为正常消化的一部分,该酶家族通常仅限于肠腔。作为正常消化的一部分,消化酶以相对较高的浓度存在,能够在数小时内降解大多数生物分子和整个组织。正常情况下,消化酶通过粘膜屏障保留在肠腔内。但在休克的情况下,相同的消化酶会从管腔转运到肠壁。一旦进入壁内,它们就会启动自动消化过程,将胰酶和炎症消化产物释放到中央循环中,导致细胞损伤和多器官衰竭。我们获得的初步证据表明,阻断肠腔中的消化酶可以显着减少炎症介质的产生,并显着提高严重休克后的生存率。我们的假设是,在失血性休克中,通常由刷状缘上皮提供的保护屏障受到损害,并允许预先存在的消化酶进入肠壁的间质组织。消化酶通过多种途径进入中央循环,在那里它们通过膜受体的酶裂解引起微血管炎症和主要细胞功能障碍。紧密连接蛋白胞外结构域的裂解以及上皮和内皮渗透性的不可逆升高或胰岛素受体胞外结合位点的裂解和胰岛素抵抗。阻断胰酶和暂时阻止肠腔内的消化可以预防炎症并降低多器官衰竭引起的死亡率。因此,我们建议研究以下三个重要的具体目标: 1. 确定失血性休克中胰腺消化酶从肠腔沿多种途径进入外周微循环的活性和运输以及相关微血管炎症反应的水平。 2. 通过肠腔内的酶阻滞来确定胰腺消化酶在炎症和细胞毒性介质的产生以及失血性休克后的长期存活中的作用。 3. 测量休克早期阶段与紧密连接失败和关键细胞功能丧失相关的蛋白酶对细胞外受体的裂解水平。这些研究将确定休克中强大的细胞和器官损伤机制的起源机制。我们将测试一种可能具有临床实用性的针对休克高死亡率的新干预措施。公共健康相关性:这项研究的总体目标是开发一种新的干预措施,以对抗休克和多器官衰竭中的炎症和细胞损伤,这是死亡率方面最重要的问题之一。这项工作基于新的假设,即在休克中,胰腺消化酶在炎症、细胞功能障碍和器官衰竭的发展中发挥着核心作用。这些异常强大的消化酶通常作为正常消化的一部分保留在肠腔中,并且粘膜屏障阻止它们进入肠壁。但在肠道缺血和休克的情况下,粘膜屏障变得可渗透,酶穿过粘膜上皮进入肠壁,并从那里进入其他组织室,在那里它们迅速自动消化健康组织。我们提供的初步证据表明,阻断肠腔内的消化酶对于减少各种形式的休克中的炎症非常有效。但人们对休克条件下胰腺消化酶的运输和作用的细节知之甚少,以优化对消化酶的封锁。在这个项目中,我们将使用一种新的微酶谱技术定量测定失血性休克中消化酶穿过肠上皮进入肠壁、进入淋巴管、腹膜液和进入外周微循环的过程。我们将确定肠腔内消化酶的阻断在多大程度上可以降低休克死亡率。此外,我们将研究休克中急性细胞功能障碍的新假设,其形式是消化蛋白酶(例如消化酶)裂解受体。紧密连接蛋白的裂解是由于胰岛素受体胞外域的裂解而导致上皮或内皮渗透性或胰岛素抵抗不可逆增加的机制。这项研究将为开发通过短暂阻断胰腺消化酶来对抗多器官衰竭的新干预措施提供重要信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geert W. Schmid-Schoenbein其他文献
Geert W. Schmid-Schoenbein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geert W. Schmid-Schoenbein', 18)}}的其他基金
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
- 批准号:
8632760 - 财政年份:2009
- 资助金额:
$ 27.98万 - 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
- 批准号:
8228032 - 财政年份:2009
- 资助金额:
$ 27.98万 - 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
- 批准号:
8037053 - 财政年份:2009
- 资助金额:
$ 27.98万 - 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
- 批准号:
9187459 - 财政年份:2009
- 资助金额:
$ 27.98万 - 项目类别:
Digestive Enzymes and Microvascular Inflammation in Shock
休克时的消化酶和微血管炎症
- 批准号:
8792620 - 财政年份:2009
- 资助金额:
$ 27.98万 - 项目类别:
2007 Molecular Mechansims in Lymphatic Function & Disease
2007 淋巴功能的分子机制
- 批准号:
7393930 - 财政年份:2008
- 资助金额:
$ 27.98万 - 项目类别:
2006 Molecular Mechanisms in Lymphatic Function & Disease Gordon Conference
2006 淋巴功能的分子机制
- 批准号:
7114571 - 财政年份:2006
- 资助金额:
$ 27.98万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Development of a novel disease-modifying glycan therapeutic for early at-home intervention of acute vaso-occlusive crisis in sickle cell disease
开发一种新型疾病缓解聚糖疗法,用于镰状细胞病急性血管闭塞危象的早期家庭干预
- 批准号:
10603870 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别:
The effects of wildfire exposure on maternal allergic asthma and consequences on neurobiology
野火暴露对母亲过敏性哮喘的影响及其对神经生物学的影响
- 批准号:
10727122 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别:
Heterogeneity and cellular hierarchy of lung cDC2
肺 cDC2 的异质性和细胞层次
- 批准号:
10665348 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别:
Identifying pediatric asthma subtypes using novel privacy-preserving federated machine learning methods
使用新颖的隐私保护联合机器学习方法识别小儿哮喘亚型
- 批准号:
10713424 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别: