Dentin Biomodification for Optimization of Bioadhesive Dental Restorations

牙本质生物改性优化生物粘附性牙齿修复体

基本信息

项目摘要

SUMMARY The most conservative and common treatment of missing dental tissue is direct resin composite restoration. Its failure rate is high, lasting an average of 6 years. The primary reason for failure is the development of secondary caries. An estimated 50% of resin composite interventions replaces failed restorations, leading to a vicious restorative cycle with increasing complexity, poor prognosis for the tooth, and high treatment costs. Resin-based restorations rely on micro-mechanical adhesion to enamel and dentin structures. Dentin is of particular importance as it is the bulk of the tooth and tightly connected with the pulp tissue. It is well known that components of the dentin extracellular matrix play major roles in the formation and sustainability of the dentin-resin bonds. Bioinspired by natural dentin toughening mechanisms, our group identified refined mixtures and isolated proanthocyanidins (PACs), a 3D structurally diverse class of biosynthetic polyphenols that can mimic dentin natural processes. These molecules elicit enhancement to the mechanical properties and reduce matrix biodegradability, collectively termed dentin biomodification. Additionally, we have revealed that PACs can play multi-functional roles at the inherently wet dentin-resin interfaces. Therefore, PACs represent new biomaterials with promising impact in the broader field of restorative/reparative dentistry. Notably, the PAC sources of this project are renewable industrial waste and/or by-products, respectively, making them highly sustainable from both economic and environmental perspectives. The ultimate goal is to develop a mechanistically based and clinically feasible strategy to modulate permanent physico-mechanical properties of the dentin matrix, to create more stable dentin-resin bioadhesion, and thus increase the longevity of resin composite restorations. This will be accomplished by identifying features of specific molecules, ligand-PACs, that mediate stable biomodification and durable dentin-resin interfaces. More specifically, this project will define the structure activity relationships of ligand-PACs (a) to modulate the main components of dentin (extracellular matrix and mineral) sustainably; (b) to establish and optimize bioadhesion mechanisms at the dentin-PAC- resin interfaces; and (c) to tailor interfacial responses that directly affect performance and (pre-)clinical usage. The Specific Aims are: (Aim 1) Define distinct mechanisms of interactions of ligand-PACs with the extracellular matrix, mineral phase, and altered forms of dentin. (Aim 2) Elucidate and tailor ligand-PACs to produce robust biointerfaces. (Aim 3) Determine the stability of the tooth-PAC-resin interfaces in relevant microenvironments. The sustainable biomodification of the dental tissue will overcome clinical pitfalls associated with failure of tooth-resin interfaces, particularly dentin breakdown. The ultimate outcome is the development of a PAC-based intervention approach that can revolutionize dental restoration.
概括 缺失牙组织最保守、最常见的治疗方法是直接树脂复合修复。它是 故障率高,平均持续6年。失败的主要原因是开发 继发性龋齿。据估计,50% 的树脂复合材料干预措施取代了失败的修复体,从而导致 恶性修复循环,复杂性增加,牙齿预后差,治疗费用高。 树脂修复体依赖于牙釉质和牙本质结构的微机械粘附。牙本质是 特别重要,因为它是牙齿的主体并与牙髓组织紧密相连。众所周知 牙本质细胞外基质的成分在牙本质细胞外基质的形成和可持续性中发挥着重要作用 牙本质-树脂键。受天然牙本质增韧机制的生物启发,我们的小组确定了精制混合物 和分离的原花青素 (PAC),一种 3D 结构多样化的生物合成多酚类,可以 模仿牙本质的自然过程。这些分子可增强机械性能并减少 基质生物降解性,统称为牙本质生物改性。此外,我们还透露 PAC 可以在固有湿润的牙本质-树脂界面上发挥多功能作用。因此,PAC 代表了新的 在更广泛的修复/修复牙科领域具有前景的生物材料。值得注意的是,PAC 该项目的来源分别是可再生工业废物和/或副产品,这使得它们高度 从经济和环境角度来看都是可持续的。最终目标是开发一个 基于机械原理且临床可行的策略来调节永久物理机械特性 牙本质基质,形成更稳定的牙本质-树脂生物粘附,从而延长树脂的寿命 复合修复体。这将通过识别特定分子、配体-PAC 的特征来实现, 介导稳定的生物改性和持久的牙本质-树脂界面。更具体地说,该项目将定义 配体-PACs的结构活性关系(a)调节牙本质(细胞外)的主要成分 基质和矿物质)可持续; (b) 建立并优化牙本质-PAC-的生物粘附机制 树脂界面; (c) 定制直接影响性能和临床(前)使用的界面反应。 具体目标是:(目标 1)定义配体-PAC 与细胞外相互作用的不同机制 基质、矿物相和牙本质的改变形式。 (目标 2)阐明并定制配体-PAC 以产生稳健的 生物界面。 (目标 3)确定相关微环境中牙齿-PAC-树脂界面的稳定性。 牙组织的可持续生物改性将克服与牙体修复失败相关的临床缺陷 牙齿-树脂界面,特别是牙本质破坏。最终结果是开发基于 PAC 的 可以彻底改变牙齿修复的干预方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proanthocyanidin Tetramers and Pentamers from Cinnamomum verum Bark and Their Dentin Biomodification Bioactivities.
肉桂树皮中的原花青素四聚体和五聚体及其牙本质生物改性生物活性。
  • DOI:
  • 发表时间:
    2022-02-25
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Jing, Shu;Alania, Yvette;Reis, Mariana;McAlpine, James B;Chen, Shao;Bedran;Pauli, Guido F
  • 通讯作者:
    Pauli, Guido F
B-type Proanthocyanidins with Dentin Biomodification Activity from Cocoa (Theobroma cacao).
来自可可(Theobroma cacao)的具有牙本质生物修饰活性的 B 型原花青素。
  • DOI:
  • 发表时间:
    2022-10-05
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jing, Shu;Reis, Mariana;Alania, Yvette;McAlpine, James B;Chen, Shao;Bedran;Pauli, Guido F
  • 通讯作者:
    Pauli, Guido F
Surface-Directed Mineralization of Fibrous Collagen Scaffolds in Simulated Body Fluid for Tissue Engineering Applications.
用于组织工程应用的模拟体液中纤维胶原支架的表面定向矿化。
  • DOI:
    10.1021/acsabm.0c01507
  • 发表时间:
    2021-03-15
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Bim-Júnior O;Curylofo-Zotti F;Reis M;Alania Y;Lisboa-Filho PN;Bedran-Russo AK
  • 通讯作者:
    Bedran-Russo AK
Modulatory role of terminal monomeric flavan-3-ol units in the viscoelasticity of dentin.
末端单体黄烷-3-醇单元在牙本质粘弹性中的调节作用。
Proanthocyanidin Block Arrays (PACBAR) for Comprehensive Capture and Delineation of Proanthocyanidin Structures.
原花青素块阵列 (PACBAR) 用于全面捕获和描绘原花青素结构。
  • DOI:
    10.1021/acs.jafc.0c05392.s001
  • 发表时间:
    2020-11-11
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Shu;Wayne E. Zeller;D. Ferreira;Bin Zhou;Joo;A. Bedran;Shao;G. Pauli
  • 通讯作者:
    G. Pauli
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ana Karina B Bedran-Russo其他文献

Ana Karina B Bedran-Russo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ana Karina B Bedran-Russo', 18)}}的其他基金

Modularity in Oligomeric Phenol Chemistry for Biomodulation of Dental Structures
用于牙齿结构生物调节的低聚苯酚化学的模块化
  • 批准号:
    10604657
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
  • 批准号:
    10609456
  • 财政年份:
    2019
  • 资助金额:
    $ 49.6万
  • 项目类别:
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
  • 批准号:
    9977153
  • 财政年份:
    2019
  • 资助金额:
    $ 49.6万
  • 项目类别:
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
  • 批准号:
    10294940
  • 财政年份:
    2019
  • 资助金额:
    $ 49.6万
  • 项目类别:
Dentin Biomodification for Optimization of Bioadhesive Dental Restorations
牙本质生物改性优化生物粘附性牙齿修复体
  • 批准号:
    10397165
  • 财政年份:
    2019
  • 资助金额:
    $ 49.6万
  • 项目类别:
MOST in the Summer
大多数在夏天
  • 批准号:
    8418736
  • 财政年份:
    2012
  • 资助金额:
    $ 49.6万
  • 项目类别:
MOST in the Summer
大多数在夏天
  • 批准号:
    8630877
  • 财政年份:
    2012
  • 资助金额:
    $ 49.6万
  • 项目类别:
MOST in the Summer
大多数在夏天
  • 批准号:
    8812794
  • 财政年份:
    2012
  • 资助金额:
    $ 49.6万
  • 项目类别:
Biomodification of Dentin Matrix Structure
牙本质基质结构的生物改性
  • 批准号:
    8289488
  • 财政年份:
    2011
  • 资助金额:
    $ 49.6万
  • 项目类别:
Biomodification of Dentin Matrix Structure
牙本质基质结构的生物改性
  • 批准号:
    8186725
  • 财政年份:
    2011
  • 资助金额:
    $ 49.6万
  • 项目类别:

相似国自然基金

动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
  • 批准号:
    82000254
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
  • 批准号:
    31902264
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
  • 批准号:
    81871787
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
  • 批准号:
    81804098
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
  • 批准号:
    10679796
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
A Bioprinted Volumetric Model of Vascularized Glioblastoma
血管化胶质母细胞瘤的生物打印体积模型
  • 批准号:
    10717766
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
The mechanics of host cell repopulation of engineered tissues
工程组织的宿主细胞再生机制
  • 批准号:
    10580269
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
  • 批准号:
    10735681
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
  • 批准号:
    10798646
  • 财政年份:
    2023
  • 资助金额:
    $ 49.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了