Modeling PIEZO associated diseases in Caenorhabditis elegans: from genetics to mechanism
秀丽隐杆线虫 PIEZO 相关疾病建模:从遗传学到机制
基本信息
- 批准号:10866791
- 负责人:
- 金额:$ 24.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAllelesAnimal ModelArthrogryposisAwardBasic ScienceBiochemicalBiological AssayBiological ProcessCaenorhabditis elegansCalciumCalcium SignalingCardiovascular systemCellsConnective TissueDataDefectDehydrationDevelopmentDiseaseDistalDrosophila genusDrug TargetingDysplasiaElectrophysiology (science)ExocytosisFunctional disorderGenesGeneticGenetic Predisposition to DiseaseGenetic ScreeningGoalsGonadal Steroid HormonesGonadal structureGordon syndromeHermaphroditismHomeostasisHomologous GeneHumanImageInheritedIon Channel ProteinKnowledgeLinkMass Spectrum AnalysisMembraneMissense MutationModelingMolecularMusMutationNatureNematodaNeuronsOocytesOrthologous GenePathway interactionsPatientsPharyngeal structurePhenotypePhysiologicalPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelProstaglandinsPumpRare DiseasesRegulationReproductionReproductive ProcessReproductive systemResearchResearch PersonnelRoleSeriesSignal PathwaySignal TransductionSperm MotilityStretchingSuppressor MutationsSymptomsSystemTestingTherapeuticTissuesTranslational ResearchVariantWorkZebrafishcareerdesignegggene interactiongenetic analysisgenetic approachgenome sequencingin vivomechanical stimulusmechanotransductionmutantnew therapeutic targetnovelnovel therapeuticsreproductive tractsensorskillssperm cellstomatocytic anemiatraffickingwhole genome
项目摘要
Project Summary/ Abstract
Channelopathies are diseases or physiological disorders caused by the dysfunctional ion channel proteins. For
example, the essential mechanosensitive channels PIEZO1 and PIEZO2 have been tightly linked to multiple
diseases, such as distal arthrogryposis, dehydrated hereditary stomatocytosis, and Gordon Syndrome. There
are ~100 disease alleles that have been identified in PIEZO1/2, most of which caused severe physiological
disorders in cardiovascular, vestibular, neuronal, and connective tissues. Despite the electrophysiological
studies in the patients’ cells indicated that these symptoms are likely due to a mechanotransduction defect, the
underlying mechanisms or molecular determinants of PIEZO diseases remain largely unknown. Here, I
introduce a facile and powerful in vivo system for the functional study of PIEZO; the stretch sensitive and
responsive C. elegans reproductive tract. I have discovered that the dysfunctional PEZO-1 (the sole ortholog of
PIEZO in C. elegans) causes severely reduced brood sizes due to the crushing oocytes in the spermatheca
and poor sperm motility (3). This proposed study aims to discover the nature of the pathways and genetic
interactors that enable PIEZO to respond to mechanical stimuli and coordinate mechanotransductive tissue
function in vivo. Furthermore, I will identify new genetic suppressors and associated pathways in the C.
elegans reproductive tract. This basic research will shed light on the understanding of channelopathy diseases
caused by PIEZO dysfunction and the potential therapeutical drug target design. To achieve these goals, I will
pursue three specific aims: The first aim is to identify novel genetic interactors of PEZO-1 in C. elegans. A
combination of genetic screens and biochemical assays will be used to achieve this aim. I expect that
completing the proposed aims will establish the C. elegans reproductive system as a simple and genetically
tractable model to elucidate PIEZO biological functions and to better understand the molecular mechanisms of
PEZO-1 activity. The second aim is to determine whether inter-tissue signaling pathways (such as the sex
hormone prostaglandin) is affected in pezo-1 mutants. To achieve this aim, I will perform genetic and
biochemical assays to determine whether PEZO-1 contributes to prostaglandin synthesis and secretion, which
are essential for sperm attraction. The final aim is to identify target tissues and relative contribution of PIEZO
disease alleles to intracellular Ca2+ homeostasis and signaling. To achieve this aim, I will generate a set of the
tissue-specific Ca2+ indicators to quantify the calcium influx in each mutant. These studies should lead to a
comprehensive delineation of genes that interact with pezo-1, and new pathways that involve
mechanotransduction. This research will also shed light on the molecular mechanisms of the genetic diseases
caused by PIEZO dysfunction. Overall, this K99/R00 award will strengthen my research skillset and facilitate
my transition into an independent researcher in the field of genetics, development, mechanobiology, and
translational science of human rare diseases.
项目概要/摘要
离子通道病是由功能失调的离子通道蛋白引起的疾病或生理障碍。
例如,重要的机械敏感通道 PIEZO1 和 PIEZO2 已与多个紧密相连
疾病,例如远端关节弯曲、脱水遗传性口细胞增多症和戈登综合征。
PIEZO1/2 中已鉴定出约 100 个疾病等位基因,其中大多数会导致严重的生理症状
尽管存在电生理学方面的疾病,但心血管、前庭、神经元和结缔组织的疾病。
对患者细胞的研究表明,这些症状可能是由于机械传导缺陷造成的,即
PIEZO 疾病的潜在机制或分子决定因素仍然很大程度上未知。
引入一个简单而强大的体内系统,用于 PIEZO 的功能研究;
我发现了功能性的 PEZO-1(唯一的直系同源物)。
线虫中的压电(PIEZO)由于受精囊中的卵母细胞被压碎而导致幼崽尺寸严重减小
和精子活力差 (3)。这项拟议的研究旨在发现途径和遗传的本质。
使 PIEZO 能够响应机械刺激并协调机械传导组织的交互器
此外,我将在 C 中鉴定新的基因抑制因子和相关途径。
这项基础研究将有助于了解线虫生殖道疾病。
由PIEZO引起的功能障碍和潜在的治疗药物靶点设计,我将实现这些目标。
追求三个具体目标:第一个目标是鉴定秀丽隐杆线虫中 PEZO-1 的新遗传相互作用因子。
我预计将结合遗传筛选和生化检测来实现这一目标。
完成拟议的目标将使线虫生殖系统成为一个简单的遗传系统
易于处理的模型来阐明 PIEZO 的生物学功能并更好地理解其分子机制
PEZO-1 活性的第二个目的是确定组织间信号通路(例如性别)是否存在。
激素前列腺素)在 pezo-1 突变体中受到影响 为了实现这一目标,我将进行遗传和基因检测。
生化测定以确定 PEZO-1 是否有助于前列腺素合成和分泌,这
对于精子吸引至关重要,最终目的是确定目标组织和 PIEZO 的相对贡献。
细胞内 Ca2+ 稳态和信号传导的疾病等位基因 为了实现这一目标,我将生成一组
组织特异性 Ca2+ 指标来量化每个突变体中的钙流入。这些研究应该得出一个结果。
全面描述与 pezo-1 相互作用的基因,以及涉及的新途径
这项研究还将揭示遗传疾病的分子机制。
总的来说,这个 K99/R00 奖项将增强我的研究技能并促进我的研究技能。
我转变为遗传学、发育学、机械生物学等领域的独立研究员
人类罕见疾病的转化科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofei Bai其他文献
Xiaofei Bai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别: