Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
基本信息
- 批准号:10877387
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAtomic Force MicroscopyAttenuatedBiological MarkersBiophysicsCardiacCardiac MyocytesCardiomyopathiesCellsClinicalCytoskeletal ProteinsCytoskeletonDefectDevelopmentDiagnosisDiastoleDilated CardiomyopathyEquilibriumExtracellular MatrixFibroblastsFluorescence Resonance Energy TransferFrameshift MutationFunctional disorderGene ExpressionGene Expression ProfileGene Expression RegulationGene TargetingGenesGeneticGeometryGoalsHeartHeart DiseasesHeart failureHeterozygoteHomologous GeneHumanHuman PathologyHypertrophyImageIn VitroInvestigationKnock-outKnockout MiceLengthLifeLinkMaintenanceMeasurementMechanicsMediatingMentorsMicrofilamentsModelingMolecularMusMutationMyocardiumNonsense MutationPathogenicityPathologicPathway interactionsPatientsPhasePhenotypePlayProteinsReportingResearchRoleSarcomeresSignal PathwayStimulusStressStructural defectStructureSubcellular structureSystoleTechniquesTestingTissuesTranslatingVariantVentricularVentricular RemodelingX ray diffraction analysisbiomechanical testbiophysical techniquesdesignextracellularfilaminfunctional lossheart cellin vitro Modelinduced pluripotent stem cell derived cardiomyocytesloss of function mutationmechanical forcemechanical loadmechanical signalmechanical stimulusmouse modelmulti-scale modelingnovelnovel therapeuticspost-doctoral trainingpreventresponsesensortooltranscriptomicstransmission processventricular hypertrophy
项目摘要
PROJECT SUMMARY / ABSTRACT
A common and deadly form of familial heart disease is dilated cardiomyopathy (DCM), which is typically
characterized by adverse cellular and ventricular remodeling and systolic dysfunction. DCM is often associated
with loss-of-function mutations in genes encoding sarcomeric or cytoskeletal proteins. Mechanotransmission and
mechanosignaling in cardiomyocytes (CMs) rely on these protein networks, particularly in the costamere, which
provides a direct mechanical link between the extracellular matrix (ECM) and the Z-disk of the sarcomere. The
costamere may therefore regulate both ‘inside-out’ mechanotransmission (transmitting sarcomere-born forces
out to the ECM) and ‘outside-in’ mechanosignaling (transmitting/transducing extracellular mechanical signals
into the CM)—the dysfunction of either of which may be central to DCM progression. My overall hypothesis is
that the costamere and cortical cytoskeleton of cardiomyocytes provide key mechanosensitive protein networks
that regulate mechanical signalling pathways initiated by intracellular and extracellular forces, and that specific
defects in these structures inhibits their ability to transmit and transduce mechanical forces, causing contractile
dysfunction and pathological cell remodelling. Supporting this, the costamere protein Filamin C (FLNC) has
recently been implicated in a variety of human cardiomyopathies, including DCM. During my F32 postdoctoral
training, I used a new mouse model that exploits cardiac-specific and inducible homozygous FLNC deletion to
trigger rapid DCM development. I found that a loss of FLNC causes significant reductions in the tissue- and cell-
level contractility, as well as significant CM remodeling accompanied by a reduction in cortical cytoskeleton
stiffness. However, whether FLNC mutations in humans with DCM cause similar defects in cortex structure and
mechanics, systolic mechanotransmission, and mechanosensitive gene regulation requires further investigation.
Thus, the goal of my proposed research is to integrate quantitative subcellular-level structural and
biomechanical measurements with quantitative measurements of intracellular stress distributions and
hypertrophic gene expression patterns in response to intra- and extra-cellular mechanical perturbations
using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing a patient-
specific FLNC-truncating mutation. To accomplish this, I will: (1) combine X-ray diffraction imaging, atomic
force microscopy, and multiscale computational modeling to test the hypothesis that a loss of FLNC disrupts
‘inside-out’ mechanotransmission of sarcomeric forces by dysregulating myofilament lattice geometry via altered
cortical cytoskeleton mechanics in murine CMs, (2) apply these biophysical methods and hypotheses to a new
human DCM model made from gene-edited hiPSC-CMs expressing a patient-specific FLNC-truncating variant,
and (3) combine FRET-based molecular tension sensor imaging, in-vitro extracellular mechanical loading
techniques, and quantitative transcriptomics to test the hypothesis that truncated FLNC dysregulates ‘outside-
in’ mechanosignaling in hiPSC-CMs and promotes DCM remodeling.
项目概要/摘要
扩张型心肌病 (DCM) 是一种常见且致命的家族性心脏病,通常是
以不利的细胞和心室重塑为特征的DCM通常与收缩功能障碍有关。
编码肌节或细胞骨架蛋白的基因发生功能丧失突变,以及
心肌细胞 (CM) 中的机械信号传导依赖于这些蛋白质网络,特别是在肋节中,
提供细胞外基质 (ECM) 和肌节 Z 盘之间的直接机械连接。
因此,肋节可能调节“由内而外”的机械传递(传递肌节产生的力)
到 ECM)和“由外向内”机械信号传递(传输/转换细胞外机械信号
到 CM)——其中任何一个的功能障碍可能是 DCM 进展的核心。
心肌细胞的肋节和皮质细胞骨架提供了关键的机械敏感蛋白网络
调节由细胞内和细胞外力启动的机械信号传导途径,以及特定的
这些结构中的缺陷抑制了它们传递和转换机械力的能力,导致收缩
肋纤维蛋白 C (FLNC) 可以支持这一点。
最近在我的 F32 博士后期间发现与多种人类心肌病有关,包括 DCM。
在训练中,我使用了一种新的小鼠模型,该模型利用心脏特异性和可诱导的纯合 FLNC 缺失来
我发现 FLNC 的缺失会导致组织和细胞的显着减少。
水平收缩性,以及显着的 CM 重塑,并伴有皮质细胞骨架的减少
然而,患有 DCM 的人的 FLNC 突变是否会导致皮质结构和僵硬的类似缺陷。
力学、收缩性机械传递和机械敏感基因调控需要进一步研究。
因此,我提出的研究的目标是整合定量的亚细胞水平结构和
生物力学测量与细胞内应力分布的定量测量
响应细胞内和细胞外机械扰动的肥大基因表达模式
使用人类诱导多能干细胞衍生的心肌细胞(hiPSC-CM)表达患者-
为了实现这一目标,我将:(1)结合X射线衍射成像、原子分析。
力显微镜和多尺度计算模型来检验 FLNC 丢失会破坏这一假设
通过改变肌丝晶格几何形状失调来实现肌节力的“由内而外”机械传递
小鼠 CM 中的皮质细胞骨架力学,(2) 将这些生物物理方法和假设应用于新的
由表达患者特异性 FLNC 截短变体的基因编辑 hiPSC-CM 制成的人类 DCM 模型,
(3)结合基于FRET的分子张力传感器成像、体外细胞外机械加载
技术和定量转录组学来检验截短的 FLNC 失调“外部-
hiPSC-CM 中的机械信号传导并促进 DCM 重塑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH D. POWERS其他文献
JOSEPH D. POWERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH D. POWERS', 18)}}的其他基金
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10482405 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10283562 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
The role of cytoskeletal mechanotransduction and its regulation by Filamin C in pathological cardiac hypertrophy
病理性心脏肥大中细胞骨架机械传导的作用及其 Filamin C 的调节
- 批准号:
10249965 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
基于原子力显微镜探讨肝纤维化动态进展中黏弹性生物力学基础
- 批准号:82202191
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于原子力显微镜的动态交联聚合物共价键解离/键合、链段松弛动力学及界面粘结研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
大气细颗粒物中纳米微塑料的原子力显微镜-拉曼成像鉴定及污染特征分析
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
基于原子力显微镜与深度神经网络训练的巨噬细胞生物力学的研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于小角散射和原子力显微镜研究多因素诱导纳米TATB自聚长大机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
The Multiscale Role of Piezo Channels in Obesity-Associated Cartilage Damage
压电通道在肥胖相关软骨损伤中的多尺度作用
- 批准号:
10612757 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Architectural regulation of cytotoxic synapse detachment
细胞毒性突触脱离的结构调节
- 批准号:
10467438 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
The Multiscale Role of Piezo Channels in Obesity-Associated Cartilage Damage
压电通道在肥胖相关软骨损伤中的多尺度作用
- 批准号:
10387891 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10683796 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10482405 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别: