Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
基本信息
- 批准号:10626283
- 负责人:
- 金额:$ 40.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-08 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActomyosinAdhesionsAffectAneuploidyArchitectureArtificial Mammalian ChromosomesBiologyBiophysicsBlack raceCD47 geneCancer ModelCancer PatientCarcinomaCellsChemicalsChromosomal InstabilityChromosome SegregationClinical TrialsCoupledCouplingCytoplasmDNA DamageDataDendritic CellsEquilibriumEvolutionExtracellular MatrixFeedbackGenesGenetic VariationGenomic InstabilityGenomicsHumanImmuneImmune signalingImmunocompetentImmunoglobulin GImmunophenotypingImpairmentIn VitroInflammatoryInnate Immune ResponseIntegrin BindingIntegrinsInterferonsKinetochoresLeadLinkLiquid substanceMacrophageMalignant NeoplasmsMalignant neoplasm of ovaryMeasuresMechanicsMicrotubulesMitosisMitoticMitotic spindleModelingMolecularMusMutationMyelogenousNatural ImmunityNatureOncogenesOutputPTPNS1 genePathway interactionsPeptidesPhagocytesPopulation HeterogeneityProcessProductionRNARoleSignal PathwaySignal TransductionSisterSolidSolid NeoplasmSystemTestingThe Cancer Genome AtlasTissuesTumor Suppressor GenesTumor TissueTumor-Associated ProcessVariantVisualizationantagonistanti-tumor immune responsecancer cellcancer genomecell cortexconstrictioncrosslinkextracellulargenetic payloadimmune checkpoint blockadein vivointraperitonealmelanomamicronucleusmutantneoplastic cellnovelnovel strategiesoptogeneticssegregationsingle cell analysissubcutaneoustooltumorwhole genome
项目摘要
Project Summary – Project 2
Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
Tumors evolve genetically via selection from a diverse population of cells with high levels of genetic variation. A
common cause is chromosome instability (CIN) due to impaired mitotic segregation. Paradoxically, mitotic errors
do not typically associate with mutations in genes involved in the core processes of mitosis. Our overall
hypothesis is that extrinsic mechanical factors – particularly 3D tissue/tumor architecture and its rigidity –
contribute to CIN and to the immune-sculpted evolution of aneuploidy. Conventional 2D cultures of cancer cells
are limited in elucidating roles for most tumor suppressor genes and oncogenes. Our in vitro and in vivo studies
will therefore collaboratively extend to 3D some of the key DNA damage/mitotic and immune signaling studies
of project 1 (Greenberg) as well as the myeloid-centric effects on tumors of project 3 (Shin/Haldar). Central
components of our studies also make use of two unique cores (Black, Chenoweth).
Disrupted tissue architecture, which is common in epithelial cancers, and loss of adhesion lead to mitotic
errors, but how these extracellular signals couple to internal mitotic processes is unclear. We propose that the
external and internal mechanics are linked as tension propagates from extracellular matrices to the cortex to the
mitotic spindle and ultimately to kinetochores. We will test the hypothesis that adhesion tightens the mechanical
coupling by manipulating either extracellular or kinetochore-microtubule tension, using mammalian artificial
chromosomes (MACs, with Black) and chemical optogenetic tools (with Chenoweth). We will also test whether
loss of tissue architecture and integrin function creates a vulnerability as cells are more dependent on other
pathways for maintaining tension, such as cortical rounding or microtubule crosslinking within the spindle.
Genome instability outputs including cytoplasmic RNA accumulation will be primary measures, extending to
signaling pathways (with Greenberg) via innate immunity.
Solid tumors are filled with macrophages that respond to numerous signals from nearby tumor cells, but
coupled effects of the confining and constricting rigidity of solid tumors are unknown. We will modulate and
visualize phagocytic interactions via ‘macrophage checkpoint’ disruption (CD47 on the cancer cell; SIRPa on the
macrophage) to test the hypothesis that this basic macrophage interaction (already in clinical trials) modulates
and is modulated by cancer genome variation. Single cell analyses will assess immune subtypes and signaling
interactions, which we will perturb (with Shin/Haldar). We will study the processes primarily in
immunocompetent, syngeneic B16 mouse melanoma model but also in an ovarian cancer model (with
Greenberg). We seek to determine whether 3D tumor tissue rigidity increases a tumor’s genetic variation,
particularly via CIN-initiated signaling, such as by micronuclei (with Greenberg). We will also determine coupled
effects of macrophage checkpoint disruption (including antagonist peptides from Chenowith), based on
preliminary data that already demonstrates durable cures with production of anti-tumor IgG.
项目总结 – 项目 2
细胞和组织力学影响染色体不稳定性和吞噬细胞相互作用
肿瘤通过从具有高水平遗传变异的不同细胞群中进行选择而进行遗传进化。
常见原因是有丝分裂分离受损导致的染色体不稳定(CIN),但矛盾的是,有丝分裂错误。
通常与参与有丝分裂核心过程的基因突变无关。
假设是外在机械因素——特别是 3D 组织/肿瘤结构及其刚性——
有助于 CIN 和癌细胞非整倍体的免疫雕刻进化。
我们的体外和体内研究在阐明大多数肿瘤抑制基因和癌基因的作用方面有限。
因此,将合作将一些关键的 DNA 损伤/有丝分裂和免疫信号研究扩展到 3D
项目 1 (Greenberg) 的研究以及项目 3 (Shin/Haldar Central) 对肿瘤的以骨髓为中心的影响。
我们研究的组成部分还利用了两个独特的核心(Black、Chenoweth)。
组织结构破坏(这在上皮癌中很常见)和粘附力丧失导致有丝分裂
错误,但这些细胞外信号如何与内部有丝分裂过程耦合尚不清楚。
当张力从细胞外基质传播到皮质再到大脑皮层时,外部和内部力学是相互联系的。
有丝分裂纺锤体并最终到达动粒我们将检验粘附收紧机械的假设。
通过使用哺乳动物人工操纵细胞外或着丝粒-微管张力来耦合
染色体(MAC,使用 Black)和化学光遗传学工具(使用 Chenoweth)我们还将测试是否。
组织结构和整合素功能的丧失会造成脆弱性,因为细胞更加依赖其他物质
维持通路张力,例如皮质变圆或纺锤体内微管交联。
包括细胞质 RNA 积累在内的基因组不稳定性输出将是主要衡量标准,延伸至
通过先天免疫的信号通路(与格林伯格)。
实体瘤充满了巨噬细胞,它们对附近肿瘤细胞的大量信号做出反应,但是
实体瘤的限制和收缩刚性的耦合效应尚不清楚,我们将进行调节和调整。
通过“巨噬细胞检查点”破坏(癌细胞上的 CD47;癌细胞上的 SIRPa)可视化吞噬细胞相互作用
巨噬细胞)来检验这种基本巨噬细胞相互作用(已在临床试验中)调节的假设
并受到癌症基因组变异的调节,单细胞分析将评估免疫亚型和信号传导。
我们将主要研究这些过程(与 Shin/Haldar)。
具有免疫功能的同基因 B16 小鼠黑色素瘤模型,而且也在卵巢癌模型中(
Greenberg)。我们试图确定 3D 肿瘤组织刚性是否会增加肿瘤的遗传变异,
特别是通过 CIN 发起的信号传导,例如通过微核(与 Greenberg 合作),我们还将确定耦合。
巨噬细胞检查点破坏(包括来自 Chenowith 的拮抗肽)的影响,基于
初步数据已经证明通过产生抗肿瘤 IgG 可以实现持久治愈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis E. Discher其他文献
Probing the structure of PEGylated-lipid assemblies by coarse-grained molecular dynamics
通过粗粒度分子动力学探测聚乙二醇化脂质组装体的结构
- DOI:
10.1039/c3sm52290c - 发表时间:
2013 - 期刊:
- 影响因子:3.4
- 作者:
篠田 渉;Dennis E. Discher;Michael L. Klein;Sharon M. Loverde - 通讯作者:
Sharon M. Loverde
Glassy worm-like micelles in solvent and shear mediated shape transitions
- DOI:
10.1039/c8sm00080h - 发表时间:
2018-04 - 期刊:
- 影响因子:3.4
- 作者:
Kaushik Chakraborty;Kandaswamy Vijayan;Andre E. X. Brown;Dennis E. Discher;Sharon M. Loverde - 通讯作者:
Sharon M. Loverde
Dennis E. Discher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis E. Discher', 18)}}的其他基金
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10608069 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10373929 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10092733 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10737802 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
Live cell reporters of genetic changes in stiff vs soft surroundings - Causes & Consequences
僵硬与柔软环境中遗传变化的活细胞报告 - 原因
- 批准号:
10594852 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别:
Liver Cancer: pre-Malignant Stiffening, Membrane Transduction, & Nuclear Rheology: Administrative Core
肝癌:癌前硬化、膜转导、
- 批准号:
8866922 - 财政年份:2015
- 资助金额:
$ 40.85万 - 项目类别:
Liver Cancer: pre-Malignant Stiffening, Membrane Transduction, & Nuclear Rheology
肝癌:癌前硬化、膜转导、
- 批准号:
8866921 - 财政年份:2015
- 资助金额:
$ 40.85万 - 项目类别:
Nuclear Mechanics varies with Tissue Mechanics & Regulates Cytoskeleton
核力学随组织力学而变化
- 批准号:
8928873 - 财政年份:2015
- 资助金额:
$ 40.85万 - 项目类别:
Liver Cancer: pre-Malignant Stiffening, Membrane Transduction, & Nuclear Rheology
肝癌:癌前硬化、膜转导、
- 批准号:
9091502 - 财政年份:2015
- 资助金额:
$ 40.85万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
- 批准号:
10664507 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
- 批准号:
10664507 - 财政年份:2023
- 资助金额:
$ 40.85万 - 项目类别:
Myosin Activation as a Novel Therapeutic Strategy for Polycystic Kidney Disease
肌球蛋白激活作为多囊肾病的新型治疗策略
- 批准号:
10313782 - 财政年份:2021
- 资助金额:
$ 40.85万 - 项目类别: