Living electrodes for auditory rehabilitation.

用于听觉康复的活体电极。

基本信息

  • 批准号:
    10618167
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Hearing loss affects over 28 million Americans and is the second most common disability in the Veteran population. For hearing loss too severe to be helped by hearing aids, cochlear implants have become the standard of care. Though they can restore the ability to understand speech for many, current electrodes have poor selectivity for neuronal excitation. This limits fidelity leading to difficulty with background noise, talking on the phone, and music appreciation. Researchers at the Center for Neurotrauma, Neurodegeneration, and Restoration (CNNR) at the CMC-VAMC have pioneered biologically-based neural interfaces with neuron- specific stimulation that have yet to be applied to hearing restoration. This project utilizes transplantable living scaffolds for the rehabilitation of hearing through biohybrid neural interfaces. Biohybrid neural interfaces will be developed that allow transplanted spiral ganglion neurons (SGN) to remain accessible to stimulation while their axons interact with neurons of the central auditory pathway or cochlea – creating a “living electrode”. SGN will be harvested from neonatal rat temporal bones and the cells’ ability to stimulate a distinct population of SGN (cochlear implantation), and centrally derived neurons (brainstem implantation) will be confirmed in culture. Light activated opsins will also be induced to allow for optical stimulation. SGNs will then be grown on two distinct scaffolds in vitro. The first directs transplanted SGN axons to the inferior colliculus in the brainstem, and the second directs them from the round window of the cochlea to the native spiral ganglion. Both designs allow for electric and optical stimulation of the transplanted SGN cell bodies. Once transplanted into living rats, cell survival and integration are evaluated with immunohistochemistry at various timepoints for up to 6 months. Electrophysiologic recordings from the auditory cortex will be obtained in deafened rats implanted with either the brainstem or cochlear scaffolds, while being stimulated either electrically or optically. Behavioral models will then used to evaluate the auditory perception induced via stimulation of the living scaffolds. The final product of this project will be two form-factors of living electrodes for hearing rehabilitation, one for implantation into the inferior colliculus and one for implantation into the cochlea. It is expected that the neuron- specific simulation permitted by this technique will allow for precision in stimulation of the auditory system that cannot be approached by current implant technology. This is a resubmission of a new proposal. This work is directly translatable to improved implantable hearing devices for those with hearing loss too severe to be adequately rehabilitated with traditional hearing aids. Improvement in the rehabilitative options for these veterans will have a significant impact on their quality of life and well-being. Not only does the proposed work advance a next generation, biologically based interface to restore the ability to interpret sophisticated auditory inputs in our Veterans, as a Career Development Award, it will also serve as vehicle to expand my technical skills in tissue engineering and regenerative therapies. This CDA will form the foundation of a career in pushing the boundaries of hearing restoration.
听力损失影响着超过 2800 万美国人,是退伍军人中第二大常见的残疾 对于听力损失严重而无法通过助听器帮助的人群,人工耳蜗已成为解决方案。 虽然它们可以恢复许多人理解语言的能力,但目前的电极已经无法达到标准护理水平。 神经兴奋的选择性较差,这限制了保真度,导致背景噪音的困难。 电话、音乐欣赏和神经创伤、神经退行性疾病中心的研究人员。 CMC-VAMC 的恢复 (CNNR) 开创了基于生物的神经元接口 尚未应用于听力恢复的特定刺激该项目利用可移植生物。 通过生物混合神经接口康复听力的支架。 将开发生物混合神经接口,允许移植的螺旋神经节神经元(SGN)保留 当它们的轴突与中央听觉通路或耳蜗的神经元相互作用时,可以接受刺激—— 将从新生大鼠颞骨和细胞的能力中获取“活电极”。 刺激独特的 SGN(人工耳蜗植入)群体和中枢衍生神经元(脑干) 植入)也将在培养物中得到证实,光激活视蛋白也将被诱导以允许光学。 然后,SGN 将在体外的两个不同支架上生长,第一个支架引导移植的 SGN 轴突。 到脑干的下丘,第二个将它们从耳蜗的圆窗引导到 两种设计都允许对移植的 SGN 细胞进行电和光刺激。 一旦移植到活体大鼠体内,就可以用以下方法评估细胞存活和整合。 长达 6 个月的不同时间点的免疫组织化学听觉电生理记录。 皮层将在植入脑干或耳蜗支架的聋鼠身上获得,同时 然后使用电或光刺激的行为模型来评估听觉感知。 通过刺激活支架诱导。 该项目的最终产品将是两种形状因数的用于听力康复的活体电极,一种用于听力康复 一个植入到下丘,另一个植入到耳蜗。 该技术允许的特定模拟将允许精确刺激听觉系统, 目前的植入技术无法实现这一点。 这是重新提交新提案。 这项工作也可以直接转化为针对听力损失患者的改进的植入式听力设备 严重者需要使用传统助听器进行充分康复。 这些退伍军人将对他们的生活质量和福祉产生重大影响。 拟议的工作不仅推进了下一代基于生物学的界面来恢复能力 解释我们退伍军人复杂的听觉输入,作为职业发展奖,它也将作为 该 CDA 将构成我扩展组织工程和再生疗法技术技能的工具。 为推动听力恢复界限的职业生涯奠定了基础。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Signal processing and stimulation potential within the ascending auditory pathway: a review.
上行听觉通路内的信号处理和刺激潜力:综述。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quimby, Alexandra E;Wei, Kimberly;Adewole, Dayo;Eliades, Steven;Cullen, D Kacy;Brant, Jason A
  • 通讯作者:
    Brant, Jason A
Bioengineering applications for hearing restoration: emerging biologically inspired and biointegrated designs.
听力恢复的生物工程应用:新兴的生物启发和生物集成设计。
  • DOI:
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Brant, Jason A;Adewole, Dayo O;Vitale, Flavia;Cullen, Daniel K
  • 通讯作者:
    Cullen, Daniel K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Brant其他文献

Jason Brant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Brant', 18)}}的其他基金

Living electrodes for auditory rehabilitation.
用于听觉康复的活体电极。
  • 批准号:
    10347184
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
  • 批准号:
    82304988
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
  • 批准号:
    82305416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
  • 批准号:
    82374307
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
  • 批准号:
    52371327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
  • 批准号:
    72302155
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
  • 批准号:
    10760827
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The power of 40 Hz sound/music for older adults with mild cognitive impairment
40 Hz 声音/音乐对患有轻度认知障碍的老年人的力量
  • 批准号:
    10683238
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
The power of 40 Hz sound/music for older adults with mild cognitive impairment
40 Hz 声音/音乐对患有轻度认知障碍的老年人的力量
  • 批准号:
    10509893
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Living electrodes for auditory rehabilitation.
用于听觉康复的活体电极。
  • 批准号:
    10347184
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Mechanisms and Effects of Hearing Loss After Cochlear Implantation
人工耳蜗植入后听力损失的机制和影响
  • 批准号:
    10225708
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了