Mathematical modeling and molecular imaging to maximize response while minimizing toxicities from systemic therapies in preclinical models of breast cancer
数学建模和分子成像可最大限度地提高乳腺癌临床前模型中全身治疗的反应,同时最大限度地降低毒性
基本信息
- 批准号:10564905
- 负责人:
- 金额:$ 47.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAftercareAnimalsBiologicalBiologyBrainBrain imagingBreast Cancer ModelCardiacCardiotoxicityCognitive deficitsCombination Drug TherapyCombined Modality TherapyCytotoxic ChemotherapyDiseaseDoseDose LimitingDoxorubicinERBB2 geneGoalsHealthHeartHistologyHumanImageImaging technologyImmunohistochemistryImmunotherapyIn complete remissionInjuryLong-Term EffectsMathematicsMeasurementMeasuresMembrane PotentialsMethodsMicrogliaNeoadjuvant TherapyOrganOutcomePathologicPatientsPhase I Clinical TrialsPositron-Emission TomographyPre-Clinical ModelRadiation therapyRegimenRiskScheduleSiteStandardizationSystemic TherapyTestingTherapeuticTimeToxic effectTrastuzumabTreatment ProtocolsTumor BurdenXenograft procedureadvanced breast canceralternative treatmentcancer therapychemotherapyclinically relevantcognitive abilityglial activationheart functionheart imagingimaging modalityimprovedmalignant breast neoplasmmathematical methodsmathematical modelmolecular imagingmouse modelneuroinflammationoptimal control theoryoptimal treatmentspatient derived xenograft modelpre-clinicalpredictive modelingprospective testquantitative imagingresponseside effectsystemic toxicitytargeted treatmenttreatment strategytumoruptake
项目摘要
PROJECT SUMMARY
Our overarching goal is to utilize biology-based mathematical models and advanced molecular imaging
to dramatically decrease systemic toxicities while either maintaining or accelerating tumor control in
preclinical models of breast cancer. Advances in systemic therapies have improved long-term survival in patients
with locally-advanced breast cancer, however there has been a concomitant increase in the associated their
long-term side effects, including cognitive deficits and cardiac problems. We have developed practical, biology-
based mathematical models capable of systematically investigating the timing, order, dosing, and sequencing of
combination therapies to identify therapeutic regimens that can potentially maximize response while minimizing
toxicity. Preliminary results (both experimental and mathematical) reveal that alternating the order and dosing of
combination chemotherapy (doxorubicin) and targeted therapy (Herceptin) can significantly and synergistically
enhance response while reducing the chemotherapy dose by 50%. Furthermore, using optimal control theory,
we have identified therapeutic regimens suggesting we can achieve tumor control 1.6x faster without increasing
the amount of chemotherapy. We propose to develop the mathematical formalism that allows for systematically
determining, on a patient specific basis, therapeutic regimens that maximize tumor response and minimize side
effects. We then select the most promising options and test them experimentally against established treatment
regimens and test for superior outcomes and toxicity. We also seek to develop quantitative imaging technologies
capable of characterizing the temporal alterations in brain and cardiac function—organs known to be adversely
affected by chemotherapies. We plan to achieve this goal with the following Specific Aims. Aim 1 will validate
mathematical predictions for maintaining tumor control with minimal chemotherapy dose by employing optimal
control theory to identify and biologically validate (with immunohistochemistry and overall tumor burden
measurements) the three most promising combination treatment strategies. Aim 2 will implement advanced
molecular imaging to quantify toxicity changes in critical organs during therapy by employing cardiac imaging of
membrane potential (18F-TTP+-PET) and brain imaging of microglia activation (TSPO, measured with 18F-DPA-
714-PET) to determine longitudinal differences between long-term effects in animals treated with the standard
and the optimized regimens. Completion of these aims will deliver a practical, experimental-computational
approach for identifying optimal treatment strategies in pre-clinical mouse models, and appropriate for
prospective testing in phase 1 clinical trials. As toxicity is the main dose-limiting factor in cancer treatments,
developing methods to control it will dramatically effect patient health.
项目概要
我们的首要目标是利用基于生物学的数学模型和先进的分子成像
显着降低全身毒性,同时维持或加速肿瘤控制
乳腺癌的临床前模型的系统治疗的进步改善了患者的长期生存。
局部晚期乳腺癌,然而,相关的乳腺癌风险也随之增加。
长期副作用,包括认知缺陷和心脏问题,我们已经开发出实用的生物学方法。
基于数学模型,能够系统地研究时间、顺序、剂量和顺序
联合疗法以确定可以最大化反应最小化的治疗方案
初步结果(实验和数学)表明改变顺序和剂量。
联合化疗(阿霉素)和靶向治疗(赫赛汀)可显着协同作用
增强反应,同时减少 50% 的化疗剂量 此外,利用最优控制理论,
我们已经确定的治疗方案表明我们可以将肿瘤控制速度提高 1.6 倍,而无需增加
我们建议开发允许系统地进行化疗的数学形式。
根据患者具体情况确定治疗方案,最大限度地提高肿瘤反应并最大限度地减少副作用
然后,我们选择最有希望的选项,并根据现有的治疗方法对它们进行实验测试。
我们还寻求开发定量成像技术。
能够描述大脑和心脏功能的时间变化——已知对这些器官产生不利影响
我们计划通过以下具体目标 1 来实现这一目标。
通过采用最佳方案以最小化疗剂量维持肿瘤控制的数学预测
控制理论来识别和生物学验证(通过免疫组织化学和总体肿瘤负荷
测量)三种最有希望的组合治疗策略将实施先进的。
分子成像通过心脏成像来量化治疗期间关键器官的毒性变化
膜电位 (18F-TTP+-PET) 和小胶质细胞激活的脑成像 (TSPO,用 18F-DPA- 测量)
714-PET)以确定用标准治疗的动物的长期影响之间的纵向差异
完成这些目标将提供实用的实验计算。
在临床前小鼠模型中确定最佳治疗策略的方法,并且适用于
一期临床试验中的前瞻性测试由于毒性是癌症治疗的主要剂量限制因素,
开发控制它的方法将极大地影响患者的健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna C. Sorace其他文献
Anna C. Sorace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna C. Sorace', 18)}}的其他基金
Personalizing immunotherapy in HER2+ breast cancer through quantitative imaging
通过定量成像对 HER2 乳腺癌进行个性化免疫治疗
- 批准号:
10338122 - 财政年份:2020
- 资助金额:
$ 47.78万 - 项目类别:
Personalizing immunotherapy in HER2+ breast cancer through quantitative imaging
通过定量成像对 HER2 乳腺癌进行个性化免疫治疗
- 批准号:
10570913 - 财政年份:2020
- 资助金额:
$ 47.78万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 47.78万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 47.78万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 47.78万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 47.78万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 47.78万 - 项目类别: