Mechanisms of epiblast and primitive endoderm segregation
外胚层和原始内胚层分离的机制
基本信息
- 批准号:10566100
- 负责人:
- 金额:$ 44.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-07 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAddressAutomobile DrivingBindingBiological ModelsBiosensorCaenorhabditis elegansCapsicumCell CommunicationCell Cycle ProgressionCell Differentiation processCellsCharacteristicsChromatinColorComplexCuesDataData SetDevelopmentDevelopmental ProcessDrosophila genusEducational process of instructingEmbryoEmbryonic DevelopmentEndodermEndoderm CellEnsureEnvironmentEpiblastFetusFibroblast Growth FactorGene ExpressionGene Expression ProfileGeneticGenetic TranscriptionGenetic studyGenome engineeringGenomic approachGenomicsHeterogeneityHumanImageImage AnalysisImplantIndividualInheritedInner Cell MassLeadMammalsModelingMolecularMorphologyMothersMusNatureNeighborhoodsNucleic Acid Regulatory SequencesOrganismOutcomePatternPopulationPositioning AttributePregnancy lossProcessRecording of previous eventsReporterReproducibilityResolutionShapesSignal TransductionSodium ChlorideSortingSourceSpecific qualifier valueStatistical Data InterpretationStereotypingStructureTechniquesTechnologyTestingTimeUterusVariantVisualizationWorkanalysis pipelineblastocystcell fate specificationcell typedevelopmental diseaseembryo cellfascinateflexibilitygenome-wideimage processingimaging approachinsightintercellular communicationmathematical modelmodel organismnovelpharmacologicpreimplantationprogramssegregationtemporal measurementtooltranscription factor
项目摘要
Abstract
Embryonic development is a fascinating process during which different cells types are made and organized into
complex and functional structures, ultimately building an entire organism. If we watch embryos develop, patterns
emerge with remarkable reproducibility. However, if we zoom in to the level of individual cells, the scene,
especially during mammalian development, often seems chaotic. Cells move around, change shape, contact
different neighbors and show fluctuations in their gene expression patterns. Yet from this apparent chaos, robust
and reproducible patterns emerge. How are the right cell types made at the right time and place in correct
proportions? In this proposal we will use a crucial cell fate decision in the preimplantation mouse embryo, when
the inner cell mass (ICM) lineage segregates into the epiblast (EPI) and the primitive endoderm (PE) lineages,
the cell types that will give rise to most of the fetus and extraembryonic cell types, respectively, as a model
system to reveal fundamental insights into the molecular and cellular mechanisms that ensure robust and
reproducible lineage formation. While studies employing genetic and pharmacological approaches have
established the necessary molecular players involved in EPI and PE cell fates, these are limited in providing
temporal information on an inherently dynamic process. Additionally, ICM cells differentiate into EPI and PE cell
types in a seemingly random pattern, which varies from one embryo to the next, complicating the interpretation
of analysis performed only at fixed time points. Here we develop novel genetically encoded fluorescent reporter
mouse lines for key factors involved in EPI and PE cell fates, which allow us to visualize and probe the
mechanisms of cell fate acquisition with unprecedented spatial and temporal resolution, using a combination of
cutting-edge live imaging, computational image processing, and genomics approaches. Using these powerful
tools, we will investigate the mechanism driving initial symmetry-breaking in the ICM to initiate EPI/PE lineage
differentiation and determine whether purely stochastic fluctuations or more predictable systematic variations
present in the embryo are responsible for initiating this fate decision. Next, we will determine how cell fates are
propagated over space and time to achieve reproducible cell-type proportions, by uniquely visualizing multiple
nodes in cell-cell communication signaling. Finally, we will use recently developed genomics techniques to probe
transcription factor occupancy and chromatin accessibility to observe how cell type-specific transcriptional
programs are set up by key factors during EPI/PE lineage segregation. This work will uncover fundamental
mechanisms by which variable developmental process can lead to robust and reproducible developmental
patterning in the early mammalian embryo.
抽象的
胚胎发育是一个令人着迷的过程,在此过程中不同的细胞类型被制造并组织成
复杂而功能性的结构,最终构建出一个完整的有机体。如果我们观察胚胎发育,就会发现模式
具有显着的再现性。然而,如果我们放大到单个细胞的水平,场景,
尤其是在哺乳动物的发育过程中,常常显得混乱。细胞四处移动、改变形状、接触
不同的邻居并显示出其基因表达模式的波动。然而,从这种明显的混乱中,稳健
并出现可重复的模式。如何在正确的时间、正确的地点制造出正确的细胞类型
比例?在本提案中,我们将在植入前小鼠胚胎中使用关键的细胞命运决定,当
内细胞团(ICM)谱系分离为外胚层(EPI)谱系和原始内胚层(PE)谱系,
将分别产生大多数胎儿和胚胎外细胞类型的细胞类型作为模型
系统揭示分子和细胞机制的基本见解,确保稳健和
可重复的谱系形成。虽然采用遗传和药理学方法的研究已经
建立了参与 EPI 和 PE 细胞命运的必要分子参与者,这些在提供方面受到限制
固有动态过程的时间信息。此外,ICM细胞分化为EPI和PE细胞
以一种看似随机的模式进行类型,每个胚胎的类型各不相同,这使解释变得复杂
仅在固定时间点进行的分析。我们在这里开发新型基因编码荧光报告基因
小鼠品系中涉及 EPI 和 PE 细胞命运的关键因素,这使我们能够可视化和探测
细胞命运获取机制具有前所未有的空间和时间分辨率,结合使用
尖端的实时成像、计算图像处理和基因组学方法。利用这些强大的
工具,我们将研究驱动 ICM 中初始对称性破缺以启动 EPI/PE 谱系的机制
微分并确定是纯粹的随机波动还是更可预测的系统变化
存在于胚胎中的细胞负责启动这一命运决定。接下来,我们将确定细胞命运如何
通过独特地可视化多个细胞,在空间和时间上传播,以实现可重复的细胞类型比例
细胞间通信信号传导的节点。最后,我们将使用最近开发的基因组学技术来探测
转录因子占据和染色质可及性,以观察细胞类型特异性转录如何
计划是根据 EPI/PE 谱系分离过程中的关键因素制定的。这项工作将揭示基本的
可变的发育过程可以导致稳健且可重复的发育的机制
早期哺乳动物胚胎的模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eszter Posfai其他文献
Eszter Posfai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eszter Posfai', 18)}}的其他基金
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
- 批准号:
10663798 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
- 批准号:
10342966 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
Geometric and mechanical control of developmental Yap signaling
发育 Yap 信号的几何和机械控制
- 批准号:
10663798 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Simultaneous mapping of somatic mosaicism and kb-resolution 3D genome in single cells.
单细胞中体细胞嵌合体和 kb 分辨率 3D 基因组的同时作图。
- 批准号:
10660575 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别: