An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
基本信息
- 批准号:10564824
- 负责人:
- 金额:$ 54.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgreementAmericanAmerican Cancer SocietyBiologicalCancer EtiologyCell AdhesionCell NucleusCell PolarityCellsCessation of lifeClinicalClinical ManagementColorColorectalColorectal CancerCompensationComputer AssistedComputer softwareComputer-Assisted Image AnalysisConsensusConsumptionCytokeratinDecision MakingDetectionDiagnosticDiseaseDisease-Free SurvivalEvaluationExclusionFutureGuidelinesHead and Neck Squamous Cell CarcinomaHealthHematoxylin and Eosin Staining MethodHumanImageImage AnalysisIncidenceInternationalInterobserver VariabilityLarge Intestine CarcinomaLearningLearning ModuleMalignant NeoplasmsMalignant neoplasm of cervix uteriMalignant neoplasm of esophagusManualsMathematicsMetastatic Neoplasm to Lymph NodesMethodsMicrosatellite InstabilityMissionModalityModelingMorphologyNeoplasm MetastasisOutcomePathologicPathologistPathologyPathology ReportPatient CarePatient SelectionPatient-Focused OutcomesPatientsPerformancePlayPrevalencePrognostic FactorProgression-Free SurvivalsProtocols documentationPublic HealthQualifyingRecommendationRegional AnatomyReproducibilityResearchRoleScientistShapesSlideSoftware ToolsSpecimenSquamous cell carcinomaStainsStandardizationStatistical Data InterpretationSystemSystems AnalysisTechniquesTimeTrainingTumor stageUnited StatesUnited States National Institutes of HealthVariantVisualWomanWorkautomated image analysiscancer riskcancer typechemotherapycohortcollegecolon cancer patientscolorectal cancer riskcolorectal cancer treatmentcomputer aided detectiondeep learningdeep learning algorithmdeep learning modeldifferential geometrydisorder riskepithelial to mesenchymal transitionexperienceimage registrationimprovedimproved outcomeinnovationlifetime riskmalignant breast neoplasmmalignant stomach neoplasmmenmortalityneoplastic cellnovelnovel strategiesoutcome predictionpatient stratificationpersonalized cancer therapyquantitative imagingrisk stratificationsymposiumtheoriestooltumorwhole slide imaging
项目摘要
PROJECT ABSTRACT
Colorectal cancer (CRC) is the fourth most common cancer, and the second leading cause of cancer death in
the United States, with an estimated incidence of 151,030 new cases in 2022. According to the American Cancer
Society, the lifetime risk of developing colorectal cancer is 1 in 23 for men and 1 in 25 for women. Tumor budding
is a prognostic factor in colorectal cancer with potential to risk stratify patients and possibly guide treatment
decisions. It is defined as the presence of a single tumor cell or a cell cluster consisting of fewer than five tumor
cells at the invasive tumor front. Unfortunately, tumor budding is not routinely disclosed in pathology reports due
to lack of reproducible methods in identifying tumor buds from H&E slides. The prevalence, mortality, and risk of
colorectal cancer as well as the potential of tumor budding as a prognostic factor necessitate an accurate, easy-
to-use, reproducible system to identify tumor budding. We aim to develop a computer-aided image analysis
system to standardize the quantitative criteria used to define tumor budding from H&E slides. In addition to
identifying tumor buds, the system will correlate tumor buds with several outcomes (microsatellite instability
status, overall survival, progression free survival, and disease free survival). As part of the proposed computer-
aided image analysis system, we will first develop a sophisticated method for color deconvolution to compensate
for color variations. This will be followed by deformable image registration and deep learning modules to
differentiate tumor from non-tumor regions. The study will show that machines can be trained using deep learning
to identify different anatomical regions within H&E slides of colorectal patients. From thereon, we will rely on
scale-space theory and alpha-shapes to identify tumor buds and hotspots. We will use mathematical morphology
and differential geometry to extract visually meaningful imaging features from tumor buds and hotspots. We will
explore the potential of these imaging features along with features produced by our unsupervised multiple
instance learning in predicting outcomes. The proposed research will help identify the association of tumor
budding to colorectal cancer outcomes. The model will be subjected to rigorous statistical analysis for accuracy
and reproducibility. The project will result in innovative software tools that facilitate the selection for personalized
cancer therapies for colorectal patients.
项目摘要
结直肠癌 (CRC) 是第四大常见癌症,也是癌症死亡的第二大原因
美国,预计 2022 年新发病例数为 151,030 例。根据美国癌症协会的数据
社会上,男性终生患结直肠癌的风险为二十分之一,女性为二十五分之一。肿瘤出芽
是结直肠癌的一个预后因素,有可能对患者进行风险分层并可能指导治疗
决定。它被定义为存在单个肿瘤细胞或由少于五个肿瘤组成的细胞簇
位于侵袭性肿瘤前沿的细胞。不幸的是,由于以下原因,肿瘤出芽通常不会在病理报告中披露:
缺乏从 H&E 载玻片中识别肿瘤芽的可重复方法。患病率、死亡率和风险
结直肠癌以及肿瘤出芽作为预后因素的潜力需要一种准确、简单的方法
易于使用、可重复的系统来识别肿瘤出芽。我们的目标是开发计算机辅助图像分析
系统标准化用于定义 H&E 载玻片肿瘤出芽的定量标准。此外
识别肿瘤芽后,系统会将肿瘤芽与多种结果相关联(微卫星不稳定性)
状态、总生存期、无进展生存期和无病生存期)。作为拟议计算机的一部分
辅助图像分析系统,我们将首先开发一种复杂的颜色反卷积方法来补偿
用于颜色变化。接下来是可变形图像配准和深度学习模块
区分肿瘤与非肿瘤区域。该研究将表明可以使用深度学习来训练机器
识别结直肠患者 H&E 幻灯片中的不同解剖区域。从此,我们将依靠
尺度空间理论和阿尔法形状来识别肿瘤芽和热点。我们将使用数学形态学
和微分几何从肿瘤芽和热点中提取视觉上有意义的成像特征。我们将
探索这些成像特征以及我们无监督多重生成的特征的潜力
预测结果的实例学习。拟议的研究将有助于确定肿瘤的关联
结直肠癌的结果正在萌芽。该模型将经过严格的统计分析以确保准确性
和再现性。该项目将带来创新的软件工具,促进个性化选择
结直肠癌患者的癌症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
- 批准号:
10714863 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10665804 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别:
Cellular Interactions in Vascular Calcification of Chronic Kidney Disease
慢性肾病血管钙化中的细胞相互作用
- 批准号:
10525401 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
- 批准号:
10601180 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别:
Console Replacement and Upgrade of 9.4 Tesla Animal Instrument
9.4特斯拉动物仪控制台更换升级
- 批准号:
10414184 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10463737 - 财政年份:2020
- 资助金额:
$ 54.37万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10268184 - 财政年份:2020
- 资助金额:
$ 54.37万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10043972 - 财政年份:2020
- 资助金额:
$ 54.37万 - 项目类别:
Advancing simultaneous fMRI-multiphoton imaging technique to study brain function and connectivity across different scales at ultrahigh field
推进同步功能磁共振成像多光子成像技术,研究超高场下不同尺度的大脑功能和连接性
- 批准号:
10670768 - 财政年份:2020
- 资助金额:
$ 54.37万 - 项目类别:
Deep-learning-based prediction of AMD and its progression with GWAS and fundus image data
基于 GWAS 和眼底图像数据的 AMD 及其进展的深度学习预测
- 批准号:
10056062 - 财政年份:2020
- 资助金额:
$ 54.37万 - 项目类别:
相似海外基金
An Intervention to Reduce Cancer Associated Thrombosis Through Improved Prophylaxis
通过改进预防来减少癌症相关血栓形成的干预措施
- 批准号:
10723791 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
PASSCODE (Pancreatic Adenocarcinoma Stromal Reprograming ConSortium COordination, Data Management and Education)
PASSCODE(胰腺腺癌基质重编程联盟协调、数据管理和教育)
- 批准号:
10517527 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别:
PASSCODE (Pancreatic Adenocarcinoma Stromal Reprograming ConSortium COordination, Data Management and Education)
PASSCODE(胰腺腺癌基质重编程联盟协调、数据管理和教育)
- 批准号:
10705730 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别: