The Subdural Hematoma Outcomes in a Population (SD HOP) Study
硬膜下血肿人群 (SD HOP) 研究结果
基本信息
- 批准号:10591861
- 负责人:
- 金额:$ 20.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAffectAttentionBenefits and RisksBig DataBlood VesselsCase Fatality RatesCase SeriesCephalicCerebral hemisphere hemorrhageCessation of lifeChronicClinicalClinical DataComputerized Medical RecordCountyCraniocerebral TraumaData ScienceDevelopmentDiagnosisDisabled PersonsDiseaseDisparityEpidemiologistEpidemiologyEpilepsyEthnic OriginEventFibrinolytic AgentsFutureGoalsHeadHematomaHemorrhageHospital MortalityHospitalizationHospitalsIncidenceIncidence StudyInformaticsInfrastructureInsuranceInsurance CoverageInternational Classification of Disease CodesIntracranial HemorrhagesIschemiaIschemic StrokeKentuckyMachine LearningMeasuresMedicaidMentorshipModelingModernizationMyocardial InfarctionOperative Surgical ProceduresOutcomeOutcome MeasurePatientsPersonsPharmaceutical PreparationsPhysiciansPopulationPopulation StudyPublic HealthRaceRandomized, Controlled TrialsRecurrenceResearchResearch PersonnelResourcesRiskScientistSeizuresStatus EpilepticusStrokeSubdural HematomaSurvivorsTechniquesTimeTraumaUnited StatesWorkacute careadverse outcomeclinical databasecostfollow-uphealth care availabilityhealth care disparityhigh riskhospital readmissionimprovedindexinglarge datasetsmachine learning algorithmneurosurgerynoveloutcome predictionpredictive modelingreadmission ratesskillssocial health determinantsstroke incidencestroke outcomethrombotic
项目摘要
Project Summary/Abstract
In the United States, subdural hematomas (SDHs) are projected to become the most common cranial
neurosurgical condition by 2030. This has major public health implications, as nearly 50% of SDH patients are
dead or severely disabled at three months. Despite its importance, there is very little study of this disease at the
population-level, particularly with regard to outcomes after patients leave the hospital. Nearly 1 in 6 patients that survive
an initial SDH hospitalization are rehospitalized within 90 days, and this risk may be impacted heavily by social
determinants of health (SocDH). Regardless, there is no predictive model available to identify SDH survivors at high risk
of rehospitalization. Further, SDHs are tightly associated with premorbid antithrombotic use, and these medications are
commonly held at the time of presentation, but there is little evidence about the risks and benefits of antithrombotic
resumption in SDH survivors. To address these limitations, we will conduct the first population-level study of SDH
outcomes in the United States. We will accomplish this relatively quickly and at low cost by utilizing the well-validated
infrastructure of the Greater Cincinnati/Northern Kentucky Stroke Study, which has been studying population-level
outcomes in stroke and intracranial hemorrhage for more than 30 years. This infrastructure will allow us to determine
the 3-year risk of major ischemic and hemorrhagic events after an SDH and determine the predictors for each outcome.
We will also a build a predictive model of 90-day rehospitalization or death among SDH patients that utilizes both
clinical and SocDH variables. We will use conventional predictive modeling along with modern machine learning
techniques, allowing us to maximize predictive ability and potentially identify new variables and interactions that lead to
adverse outcomes in SDH survivors. Through this proposal, Dr. Robinson will become an expert in the epidemiology of
SDH and in the use of novel data science techniques to analyze large clinical databases. These skills will prepare him
to become the next PI of the overall Greater Cincinnati/Northern Kentucky Stroke Study. Dr. Robinson will conduct this
work under the guidance of a distinguished mentorship committee: Dr. Brett Kissela, a stroke epidemiologist with
expertise in using big data techniques; Dr. Dan Woo, a clinician scientist that studies disparities in intracerebral
hemorrhage; Opeolu Adeoye, a neurointensivist and researcher with expertise in acute care research; and Hooman
Kamel, a stroke epidemiologist and neurointensivist with expertise in the population-level study of SDHs.
项目概要/摘要
在美国,硬膜下血肿 (SDH) 预计将成为最常见的颅脑血肿
到 2030 年,神经外科疾病将得到改善。这对公共健康具有重大影响,因为近 50% 的 SDH 患者患有
三个月时死亡或严重残疾。尽管这种疾病很重要,但目前对这种疾病的研究却很少。
人口层面,特别是患者出院后的结果。近六分之一的患者存活下来
初次 SDH 住院后 90 天内再次住院,这种风险可能会受到社会影响
健康决定因素(SocDH)。无论如何,没有可用的预测模型来识别高危 SDH 幸存者
的再住院。此外,SDH 与病前抗血栓药物的使用密切相关,并且这些药物
通常在就诊时进行,但几乎没有证据表明抗血栓治疗的风险和益处
SDH 幸存者的恢复。为了解决这些局限性,我们将进行首次人口水平的 SDH 研究
在美国的成果。我们将利用经过充分验证的技术,相对快速、低成本地实现这一目标
大辛辛那提/北肯塔基州中风研究的基础设施,该研究一直在研究人口水平
30 多年来对中风和颅内出血的治疗结果。该基础设施将使我们能够确定
SDH 后 3 年发生重大缺血和出血事件的风险,并确定每个结果的预测因素。
我们还将建立一个 SDH 患者 90 天再住院或死亡的预测模型,该模型利用
临床和 SocDH 变量。我们将使用传统的预测模型和现代机器学习
技术,使我们能够最大限度地提高预测能力,并有可能识别出新的变量和相互作用,从而导致
SDH 幸存者的不良后果。通过这项提议,罗宾逊博士将成为流行病学专家
SDH 并使用新颖的数据科学技术来分析大型临床数据库。这些技能将使他做好准备
成为整个大辛辛那提/北肯塔基州中风研究的下一位 PI。罗宾逊博士将进行这项工作
在杰出的导师委员会的指导下工作:Brett Kissela 博士,一位中风流行病学家,
使用大数据技术的专业知识; Dan Woo 博士是一位临床科学家,研究大脑内的差异
出血; Opeolu Adeoye,神经重症监护医师和研究员,具有急症护理研究方面的专业知识;和胡曼
Kamel 是一位中风流行病学家和神经重症医师,在 SDH 人群水平研究方面拥有专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Robinson其他文献
David Robinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Robinson', 18)}}的其他基金
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 20.95万 - 项目类别:
Investigating the Effect of FLASH-Radiotherapy on Tumor and Normal Tissue
研究 FLASH 放射治疗对肿瘤和正常组织的影响
- 批准号:
10650476 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 20.95万 - 项目类别: