Deep Learning of Mass Spectrometry Imaging
质谱成像的深度学习
基本信息
- 批准号:10743626
- 负责人:
- 金额:$ 43.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-07 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntibody SpecificityArchitectureAwarenessBackCellsClassificationColorComplexComputer softwareCryoultramicrotomyDataData SetDetectionDimensionsDiscriminationElasticityEndometrial CarcinomaEquilibriumFreezingGoalsHistologicHistopathologyImageImage AnalysisImmunohistochemistryIndividualIonsLaboratoriesLearningLipidsLung AdenocarcinomaMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasuresMedicineModalityModelingMolecularNamesNeural Network SimulationOpticsPathologistPathologyPatternPeptidesPerformancePolysaccharidesPreparationPublishingReportingResearch PersonnelResolutionSamplingShapesStainsStructureTechniquesTechnologyTestingTimeTissue StainsTissuesTrainingVendorWorkanticancer researchcancer diagnosiscancer subtypesconvolutional neural networkdata acquisitiondata structuredeep learningdesigndigital imaginghigh dimensionalityhuman imagingimaging detectionimaging modalityimprovedinformatics toolinterestion mobilitylearning strategymachine learning modelmass spectrometric imagingmolecular subtypesmultidimensional datan-dimensionalneural network architecturenoveloptical imagingpeople of colorprotein biomarkerstooltranslational cancer researchtwo-dimensional
项目摘要
PROJECT SUMMARY
Mass spectrometry imaging (MSI) is a rapidly developing technology which gives pathologists many new types
of targets (e.g., metabolites and lipids) to assess for translational cancer research. However, the resulting data
are even more complex than traditional images because they are highly-dimensional, and large (~100GB per
tissue section). Each “pixel” in the resulting data structure contains a 2-dimensional mass spectrum made of
both measured ion mass and ion mobility (m/z, 1/K0), and each spectrum typically contains hundreds to
thousands of individual ions (metabolites and lipids). Deep-learning methods (machine learning) have been
successfully applied to histopathology data by several laboratories including Dr. David Fenyo, Co-Investigator of
the current proposal, with such models being able to discriminate between different cancer subtypes and grades
for example. However, most machine learning models of image-data are designed around 3-data channels (Red,
Green, Blue) for analysis of digital images. Therefore, the n-dimensional data structure of mass spectrometry
imaging datasets is not easily amenable to these proven machine learning workflows. We will make MSI data
accessible to these approaches by expanding to n-dimension “color-channels”, with each unique metabolite or
lipid image serving as an individual data input. For the deep learning component, we will retain the same overall
architecture and workflow of the Panoptes tool, published by Fenyo et. al., (Cell Reports, Medicine, 2021) but
we will apply an n-dimensional approach and test the data structure on existing data which has parallel H&E
stain information annotated by pathologists. These challenges are addressed in Aim1 of the current proposal,
while Aim 2 addresses a closely related challenge of detecting image correlations both within and between these
data structures and other imaging modalities. Image correlations within such data are more trivial, but these
analyses are not well supported by existing academic or vendor software due to the amount of computation
needed for hundreds of data dimensions. We further propose and test an approach for converting these multi-
dimensional data into centroided single ion images, followed by linearization of the image to enable a simple
Pearson correlation metric, thereby making a complete correlation matrix accessible by a scaling factor of n2 to
the number of detected ions. Secondly, to deal with spatial correlations between MSI datasets and images from
other modalities, or adjacent tissue sections which may be different in size and shape, we propose to implement
a spatially aware elastic transform of the centroided image data prior to correlation analysis and machine
learning.
项目概要
质谱成像 (MSI) 是一项快速发展的技术,为病理学家提供了许多新的类型
然而,评估转化癌症研究的目标(例如代谢物和脂质)。
甚至比传统图像更复杂,因为它们具有高维度和大(每个约 100GB)
生成的数据结构中的每个“像素”都包含由以下组成的二维质谱:
测量的离子质量和离子淌度(m/z、1/K0),每个光谱通常包含数百至
深度学习方法(机器学习)已经研究了数千种单独的离子(代谢物和脂质)。
包括 David Fenyo 博士在内的多个实验室成功应用于组织病理学数据。
目前的提案,此类模型能够区分不同的癌症亚型和级别
然而,大多数图像数据机器学习模型都是围绕 3 数据通道设计的(红色、
绿色,蓝色)用于分析数字图像因此,质谱的n维数据结构。
成像数据集不容易适应这些经过验证的机器学习工作流程,我们将制作 MSI 数据。
通过扩展到 n 维“颜色通道”,可以使用这些方法,每个独特的代谢物或
对于深度学习组件,我们将保留相同的整体脂质图像。
Panoptes 工具的架构和工作流程,由 Fenyo 等人发表(Cell Reports,Medicine,2021),但是
我们将应用 n 维方法并在具有并行 H&E 的现有数据上测试数据结构
由病理学家注释的染色信息在当前提案的目标 1 中得到解决。
而目标 2 解决了一个密切相关的挑战,即检测这些图像内部和之间的图像相关性。
此类数据中的数据结构和其他图像相关性更为微不足道,但这些。
由于计算量的原因,现有的学术或供应商软件无法很好地支持分析
我们进一步提出并测试了一种转换这些多维度的方法。
将维度数据转化为质心单离子图像,然后对图像进行线性化以实现简单的
Pearson 相关度量,从而使完整的相关矩阵可通过 n2 的缩放因子访问
其次,处理 MSI 数据集和图像之间的空间相关性。
其他模式,或相邻组织切片的大小和形状可能不同,我们建议实施
在相关分析和机器学习之前对质心图像数据进行空间感知弹性变换
学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Drew R Jones其他文献
Genome-wide screening identifies Trim33 as an essential regulator of dendritic cell differentiation
全基因组筛选确定 Trim33 是树突状细胞分化的重要调节因子
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:24.8
- 作者:
I. Tiniakou;Pei;L. Lopez;Görkem Garipler;E. Esteva;Nicholas M. Adams;Geunhyo Jang;Chetna Soni;Colleen M. Lau;Fan Liu;A. Khodadadi;Tori C. Rodrick;Drew R Jones;A. Tsirigos;U. Ohler;Mark T. Bedford;S. Nimer;V. Kaartinen;E. Mazzoni;B. Reizis - 通讯作者:
B. Reizis
Chemosensory detection of polyamine metabolites guides C. elegans to nutritive microbes
多胺代谢物的化学感应检测引导秀丽隐杆线虫寻找营养微生物
- DOI:
10.1126/sciadv.adj4387 - 发表时间:
2024-03-22 - 期刊:
- 影响因子:13.6
- 作者:
Benjamin Brissette;Lia Ficaro;Chenguang Li;Drew R Jones;S. Ramanathan;Niels Ringstad - 通讯作者:
Niels Ringstad
Drew R Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Computational Methods for Analyzing lmmunoglobulin Allelic Diversity in B cells
分析 B 细胞中免疫球蛋白等位基因多样性的计算方法
- 批准号:
10751541 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Point-of-care diagnostic test for T. cruzi (Chagas) infection
克氏锥虫(恰加斯)感染的即时诊断测试
- 批准号:
10603665 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
High resolution modeling and design of immune recognition
免疫识别的高分辨率建模和设计
- 批准号:
10330807 - 财政年份:2022
- 资助金额:
$ 43.58万 - 项目类别:
High resolution modeling and design of immune recognition
免疫识别的高分辨率建模和设计
- 批准号:
10543798 - 财政年份:2022
- 资助金额:
$ 43.58万 - 项目类别: