RNA Control of Neural Function
RNA 控制神经功能
基本信息
- 批准号:10622122
- 负责人:
- 金额:$ 42.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:3&apos Untranslated RegionsAblationAffectAlternative SplicingAnimal BehaviorAreaBehavioralBindingBrainChromatinCodon NucleotidesCognitionCytoplasmElectrophysiology (science)Epigenetic ProcessEventExcisionFMR1FMRPFragile X SyndromeFunctional disorderGenesGenetic TranscriptionGrowthHealthHumanKnockout MiceLaboratoriesLeadLearningLengthLinkMediatingMemoryMessenger RNAMinorityMolecularMusNeurodegenerative DisordersNeurodevelopmental DisorderNeurophysiology - biologic functionNucleotidesPoly APoly(A) TailPolyadenylationPost-Transcriptional RegulationProtein IsoformsProteinsRNARNA DegradationRNA SplicingRNA StabilityRNA-Binding ProteinsRegulationResearchResolutionRibosomesSynapsesSynaptic plasticityTranslation InitiationTranslational RegulationTranslationsWorkautism spectrum disorderexperimental studymRNA PrecursormRNA Translationmouse modelnanoporeneuropathologyneuroregulationpostsynapticribosome profilingsynaptic functiontranscriptome sequencing
项目摘要
Our work focuses on post-transcriptional control of neural function with emphasis on translational control of
synaptic plasticity and learning and memory. We investigate the neurodevelopmental and neurodegenerative
disorders that arise when this translation goes awry. We find that mis-regulated translation leads to changes in
alternative splicing and RNA degradation, which in turn contribute to neuropathology. More specifically, our
research is comprised of three distinct but complementary areas: (1) CPEB1 and cytoplasmic polyadenylation
control of translation; (2) FMRP regulation of translation with emphasis on ribosome stalling and codon usage;
(3) FMRP regulation of alternative splicing. CPEB1-regulated cytoplasmic polyadenylation governs translation
in post-synaptic compartments, which in turn modifies synaptic strength, the underlying cellular basis of learning
and memory. Molecular, electrophysiological, and behavioral experiments from our laboratory have
demonstrated that CPEB1 regulates activity-dependent cytoplasmic polyadenylation-induced translation, which
in turn modifies synaptic strength, and cognition. CPEB1 nucleates several proteins that promote poly(A) tail
growth and removal and mediate translation initiation; they also regulate plasticity and animal behavior. Another
RNA binding protein important for brain function is FMRP, the product of the Fragile X Syndrome gene FMR1.
FMRP binds >1000 RNAs in the brain and regulates translation, primarily by stalling ribosome translocation on
specific mRNAs. One such mRNA encodes the epigenetic factor SETD2, which catalyzes the chromatin mark
H3K36me3. In FMRP-deficient mouse brain, SETD2 levels are elevated and the H3K36me3 chromatin
landscape, which is principally located in gene bodies, is disrupted. H3K36me3 is linked to alternative pre-mRNA
splicing and there is widespread mis-regulation of splicing in FMRP knockout (KO) mice. The main objectives
our research going forward will address key unanswered questions regarding RNA regulation of neural function,
primarily using mouse models: (a) CPEB1-deficiency rescues Fragile X pathophysiology in FMRP KO mice.
Does this rescue involve ribosome stalling and/or polyadenylation? (b) CPEB1 also regulates 3’UTR length.
What is the mechanism by which this occurs? (c) How does FMRP stall ribosomes on specific mRNAs? Does
FMRP act as a molecular roadblock to ribosome transit and/or does FMRP interact with the ribosome? (d) How
does FMRP regulate alternative splicing? Some of the mis-splicing events appear to involve H3K36me3, but
these are in the minority. Does FMRP regulate the translation of mRNAs encoding splicing factors, and/or does
FMRP, which is a shuttling protein, affect splicing directly? (e) How does FMRP employ codon optimality to
regulate translation and RNA stability? We will address these issues by ribosome profiling, which we modified to
distinguish between translocating and stalled ribosomes, and direct nanopore RNA sequencing, which yields
poly(A) tail size at near-nucleotide resolution as well as RNA isoforms that arise by alternative splicing. We will
deplete key regulatory factors from the mouse brain and assess synaptic function and animal behavior.
我们的工作重点是神经功能的转录后控制,重点是神经功能的翻译控制
我们研究神经发育和神经退行性病变。
当这种翻译出现问题时就会出现紊乱。我们发现,错误的翻译会导致变化。
选择性剪接和 RNA 降解,这反过来又有助于神经病理学。
研究由三个不同但互补的领域组成:(1) CPEB1 和细胞质多腺苷酸化
翻译控制;(2) FMRP 翻译调控,重点是核糖体停滞和密码子使用;
(3) CPEB1 调节的选择性剪接的 FMRP 调节控制翻译。
在突触后区室中,这反过来又改变了突触强度,这是学习的细胞基础
我们实验室的分子、电生理和行为实验。
CPEB1 调节活性依赖性的细胞质多聚腺苷酸化诱导的翻译,这
反过来,CPEB1 会改变突触强度,并且使多种蛋白质成核,从而促进聚腺苷酸尾巴的形成。
生长和去除以及介导翻译起始;它们还调节可塑性和动物行为。
对大脑功能很重要的 RNA 结合蛋白是 FMRP,它是脆性 X 综合征基因 FMR1 的产物。
FMRP 在大脑中结合超过 1000 个 RNA 并调节翻译,主要是通过阻止核糖体易位
一种这样的 mRNA 编码表观遗传因子 SETD2,它催化染色质标记。
H3K36me3 在 FMRP 缺陷的小鼠大脑中,SETD2 水平升高,并且 H3K36me3 染色质
主要位于基因体中的景观被破坏,与替代的前 mRNA 相关。
FMRP 敲除 (KO) 小鼠中普遍存在剪接错误调节。
我们未来的研究将解决有关 RNA 调节神经功能的关键未解答问题,
主要使用小鼠模型:(a) CPEB1 缺陷可挽救 FMRP KO 小鼠中的脆性 X 病理生理学。
这种拯救是否涉及核糖体停滞和/或多聚腺苷酸化?(b) CPEB1 也调节 3’UTR 长度。
发生这种情况的机制是什么?(c) FMRP 如何阻止特定 mRNA 上的核糖体?
FMRP 充当核糖体转运的分子障碍和/或 FMRP 是否与核糖体相互作用?
FMRP 是否调控选择性剪接?一些错误剪接事件似乎涉及 H3K36me3,但是
这些只是少数。FMRP 是否调节编码剪接因子的 mRNA 的翻译,和/或确实如此。
FMRP 是一种穿梭蛋白,直接影响剪接(e)FMRP 如何利用密码子最优性来实现剪接?
调节翻译和 RNA 稳定性?我们将通过核糖体分析来解决这些问题,我们对其进行了修改
区分易位核糖体和停滞核糖体,以及直接纳米孔 RNA 测序,从而产生
我们将在近核苷酸分辨率下分析聚 (A) 尾部大小以及通过选择性剪接产生的 RNA 亚型。
消除小鼠大脑中的关键调节因子并评估突触功能和动物行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel D Richter其他文献
Optimization of ribosome profiling using low-input brain tissue from fragile X syndrome model mice
使用脆性 X 综合征模型小鼠的低输入脑组织优化核糖体分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Botao Liu;Gemma Molinaro;Huan Shu;Emily E. Stackpole;K. Huber;Joel D Richter - 通讯作者:
Joel D Richter
Joel D Richter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel D Richter', 18)}}的其他基金
Elucidating Fragile X Syndrome by Investigating FMRP Molecular Function
通过研究 FMRP 分子功能阐明脆性 X 综合征
- 批准号:
10726851 - 财政年份:2023
- 资助金额:
$ 42.72万 - 项目类别:
Therapeutic Potential of Rescued FMR1 Mis-Splicing in Fragile X Syndrome
挽救 FMR1 错误剪接对脆性 X 综合征的治疗潜力
- 批准号:
10713600 - 财政年份:2023
- 资助金额:
$ 42.72万 - 项目类别:
Rescuing the Fragile X Syndrome by Resetting Translational Homeostasis
通过重置转化稳态来拯救脆性 X 综合征
- 批准号:
9281775 - 财政年份:2014
- 资助金额:
$ 42.72万 - 项目类别:
Rescuing the Fragile X Syndrome by Resetting Translational Homeostasis
通过重置转化稳态来拯救脆性 X 综合征
- 批准号:
8793364 - 财政年份:2014
- 资助金额:
$ 42.72万 - 项目类别:
Rescuing the Fragile X Syndrome by Resetting Translational Homeostasis
通过重置转化稳态来拯救脆性 X 综合征
- 批准号:
9913256 - 财政年份:2014
- 资助金额:
$ 42.72万 - 项目类别:
相似海外基金
Muscle-Specific CRISPR/Cas9 Exon Skipping for Duchenne Muscular Dystrophy Therapeutics
肌肉特异性 CRISPR/Cas9 外显子跳跃用于杜氏肌营养不良疗法
- 批准号:
10679199 - 财政年份:2023
- 资助金额:
$ 42.72万 - 项目类别:
Modulation of RNA Binding Proteins in Xenobiotic-induced Hepatotoxicity
RNA 结合蛋白在异生素诱导的肝毒性中的调节
- 批准号:
10587498 - 财政年份:2023
- 资助金额:
$ 42.72万 - 项目类别:
High-throughput dissection of RNA localization regulatory elements
RNA 定位调控元件的高通量解析
- 批准号:
10749328 - 财政年份:2023
- 资助金额:
$ 42.72万 - 项目类别:
Gprasp2 expression identifies a deeply quiescent hematopoietic stem cells subset with superior stemness and self-renewal
Gprasp2 表达鉴定出具有卓越干性和自我更新能力的深度静止造血干细胞亚群
- 批准号:
10751567 - 财政年份:2023
- 资助金额:
$ 42.72万 - 项目类别:
The role of RNA binding proteins in heart development and congenital heart defects
RNA结合蛋白在心脏发育和先天性心脏缺陷中的作用
- 批准号:
10827567 - 财政年份:2023
- 资助金额:
$ 42.72万 - 项目类别: