Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
基本信息
- 批准号:10620354
- 负责人:
- 金额:$ 59.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmsAreaArtificial IntelligenceBioinformaticsBiomedical ResearchBlindnessBlood VesselsCaringChildhoodClinicalClinical MedicineCohort StudiesComputational BiologyDataDetectionDevelopmentDiagnosisDiseaseDisease ManagementDisparateEducationEnvironmentEvaluationExpert SystemsFeedbackFundingGene ExpressionGenesGeneticGenetic MarkersGenetic RiskGenomicsGenotypeGoalsGrantHealthImageImage AnalysisInfantInformaticsInformation ManagementInternationalKnowledgeMachine LearningMacular degenerationMeasurementMendelian randomizationMethodsModelingMolecularNetwork-basedOphthalmologyOther GeneticsPaperPathogenesisPeer ReviewPerceptionPerformancePhenotypePredispositionPremature BirthPremature InfantPublishingReference StandardsResearchResearch PersonnelRetinaRetinopathy of PrematurityRiskRisk FactorsSeveritiesSystemTechnologyTestingUnited StatesValidationVascular DiseasesVisualizationWorkanalytical toolartificial intelligence methodbiomedical informaticscare deliveryclinical diagnosisclinical examinationclinical phenotypeclinical riskclinically significantcomputer sciencedata accessdata integrationdeep learningdetection platformdiagnosis standarddisorder riskfeature extractiongenetic analysisgenetic varianthigh riskimprovedinsightmachine learning predictionmodel buildingmultidisciplinarymultiple data typesneovascularneural networknovelophthalmic examinationphenotypic dataprospectiveprototypereal world applicationrecruitretinal imagingrisk prediction modelscreeningserial imagingsupplemental oxygen
项目摘要
Project Summary
The long-term goal of this project is to establish a quantitative framework for retinopathy of prematurity (ROP)
care based on clinical, imaging, genetic, and informatics principles. In the previous grant period, we have
developed artificial intelligence methods for ROP diagnosis, but real-world adoption has been limited by lack of
prospective validation and by perception of these systems as “black boxes” that do not explain their rationale
for diagnosis. Furthermore, although biomedical research data are being generated at an enormous pace,
much less work has been done to integrate disparate scientific findings across the spectrum from genomics to
imaging to clinical medicine. This renewal will address current gaps in knowledge in these areas. Our overall
hypotheses are that developing a quantitative framework for ROP care using artificial intelligence and analytics
will improve clinical disease management, that building “explainable” artificial intelligence systems will enhance
clinical acceptance and educational opportunities, and that analysis of relationships among clinical, imaging,
environmental, and genetic findings, in ROP will improve understanding of disease pathogenesis and risk.
These hypotheses will be tested using three Specific Aims: (1) Evaluation performance of an artificial
intelligence system for ROP diagnosis and screening prospectively. This will include: (a) recruit a target of over
2000 eye exams including wide-angle retinal images from 375 subjects at 5 centers, (b) optimize an image
quality detection algorithm we have recently developed, and (c) analyze system accuracy for ROP diagnosis
and screening (using a novel quantitative vascular severity scale). (2) Improve the interpretability of our
existing artificial intelligence methods for ROP diagnosis. This will include: (a) increase “explainability” of
systems by combining deep learning with traditional feature extraction methods, (b) develop neural networks to
identify changes between serial images, and (c) evaluate these methods through systematic feedback by
experts. (3) Develop integrated models for ROP pathogenesis and risk. This will include: (a) build and improve
ROP risk prediction models based on clinical, image, and demographic features, and (b) integrate genetic,
imaging, clinical, and environmental variables through genetic risk prediction by machine learning, by
investigating casual relationships with genetic variants and genetic risk scores, and by incorporating SNP
associations with gene expression measurements to identify functional genes of ROP. Ultimately, these
studies will significantly reduce barriers to adoption of technologies such as artificial intelligence for clinicians,
and will demonstrate a prototype for health information management which combines genotypic and
phenotypic data. This project will be performed by a multi-disciplinary team of investigators who have worked
successfully together for nearly 10 years, and who have expertise in ophthalmology, biomedical informatics,
computer science, computational biology, ophthalmic genetics, genetic analysis, and statistical genetics.
项目概要
该项目的长期目标是建立早产儿视网膜病变(ROP)的定量框架
基于临床、影像学、遗传和信息学原理的护理在之前的拨款期间,我们有。
开发了用于 ROP 诊断的人工智能方法,但由于缺乏
前瞻性验证以及将这些系统视为“黑匣子”,无法解释其基本原理
为了进一步诊断,尽管生物医学研究数据正在以惊人的速度生成,
在整合从基因组学到跨领域的不同科学发现方面所做的工作要少得多。
影像学到临床医学的更新将解决我们在这些领域的整体知识差距。
假设正在使用人工智能和分析开发 ROP 护理的定量框架
将改善临床疾病管理,建立“可解释的”人工智能系统将增强
临床接受度和教育机会,以及对临床、影像、
ROP 中的环境和遗传发现将提高对疾病发病机制和风险的了解。
这些假设将使用三个具体目标进行测试:(1)人工的评估性能
用于 ROP 诊断和前瞻性筛查的情报系统 这将包括: (a) 招募超过目标。
2000 次眼科检查,包括 5 个中心 375 名受试者的广角视网膜图像,(b) 优化图像
我们最近开发的质量检测算法,以及 (c) 分析 ROP 诊断的系统准确性
和筛查(使用定量新型血管严重程度量表)(2)提高我们的可解释性。
用于 ROP 诊断的现有人工智能方法这将包括:(a) 提高诊断的“可解释性”。
通过将深度学习与传统特征提取方法相结合的系统,(b)开发神经网络
识别连续图像之间的变化,并且(c)通过系统反馈评估这些方法
(3) 开发 ROP 发病机制和风险的综合模型,其中包括: (a) 建立和改进。
基于临床、图像和综合人口特征的 ROP 风险预测模型,以及 (b) 遗传、
通过机器学习进行遗传风险预测,通过成像、临床和环境变量
随意调查与遗传变异和遗传风险评分的关系,并通过纳入 SNP
最终,这些与基因表达测量的关联来识别 ROP 的功能基因。
研究将大大减少忠诚者采用人工智能等技术的障碍,
并将展示一个健康信息管理原型,该原型结合了基因型和
该项目将由多学科研究人员团队执行。
成功合作近 10 年,他们在眼科、生物医学信息学、
计算机科学、计算生物学、眼科遗传学、遗传分析和统计遗传学。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Operationalization of Retinopathy of Prematurity Screening by the Application of the Essential Public Health Services Framework.
通过应用基本公共卫生服务框架来实施早产儿视网膜病变筛查。
- DOI:
- 发表时间:2023-01-01
- 期刊:
- 影响因子:0
- 作者:Sobhy, Myrna;Cole, Emily;Jabbehdari, Sayena;Valikodath, Nita G;Al;Kalinoski, Lauren;Chervinko, Margaret;Cherwek, David Hunter;Chuluunkhuu, Chimgee;Shah, Parag K;K C, Sagun;Jonas, Karyn E;Scanzera, Angel;Yap, Vivien L;Yeh, Steven
- 通讯作者:Yeh, Steven
Telemedical diagnosis of retinopathy of prematurity: accuracy of expert versus non-expert graders.
早产儿视网膜病变的远程医疗诊断:专家与非专家分级者的准确性。
- DOI:
- 发表时间:2010-03
- 期刊:
- 影响因子:0
- 作者:Williams, Steven L;Wang, Lu;Kane, Steven A;Lee, Thomas C;Weissgold, David J;Berrocal, Audina M;Rabinowitz, Daniel;Starren, Justin;Flynn, John T;Chiang, Michael F
- 通讯作者:Chiang, Michael F
Health Equity and Disparities in ROP Care: A Need for Systematic Evaluation.
ROP 护理中的健康公平和差异:需要系统评估。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ndukwe, Tochukwu;Cole, Emily;Scanzera, Angelica C;Chervinko, Margaret A;Chiang, Michael F;Campbell, John Peter;Chan, Robison Vernon Paul
- 通讯作者:Chan, Robison Vernon Paul
Influence of Fluorescein Angiography on the Diagnosis and Management of Retinopathy of Prematurity.
荧光素血管造影对早产儿视网膜病变诊断和治疗的影响。
- DOI:10.1016/j.ophtha.2015.04.023
- 发表时间:2015-08
- 期刊:
- 影响因子:13.7
- 作者:Klufas MA;Patel SN;Ryan MC;Patel Gupta M;Jonas KE;Ostmo S;Martinez-Castellanos MA;Berrocal AM;Chiang MF;Chan RV
- 通讯作者:Chan RV
Accuracy of retinopathy of prematurity image-based diagnosis by pediatric ophthalmology fellows: implications for training.
儿科眼科研究员基于图像的早产儿视网膜病变诊断的准确性:对培训的影响。
- DOI:
- 发表时间:2011-12
- 期刊:
- 影响因子:0
- 作者:Myung, Jane S;Paul Chan, Robison Vernon;Espiritu, Michael J;Williams, Steven L;Granet, David B;Lee, Thomas C;Weissgold, David J;Chiang, Michael F
- 通讯作者:Chiang, Michael F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Peter Campbell其他文献
John Peter Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Peter Campbell', 18)}}的其他基金
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
- 批准号:
10760401 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10404639 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10612906 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Artificial intelligence assisted panoramic Optical Coherence Tomography Angiography for Retinopathy of Prematurity
人工智能辅助全景光学相干断层扫描血管造影治疗早产儿视网膜病变
- 批准号:
10198930 - 财政年份:2020
- 资助金额:
$ 59.82万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
9974137 - 财政年份:2010
- 资助金额:
$ 59.82万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10206145 - 财政年份:2010
- 资助金额:
$ 59.82万 - 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
- 批准号:
10431850 - 财政年份:2010
- 资助金额:
$ 59.82万 - 项目类别:
相似国自然基金
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
社会网络与新产品采用:二元网络结构驱动的社会影响机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 59.82万 - 项目类别:
Adaptation of a Digital Health Intervention for Chronic Condition Related fatigue to the Latino population
针对拉丁裔人群慢性病相关疲劳的数字健康干预措施的适应
- 批准号:
10697435 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Using Momentary Measures to Understand Physical Activity Adoption and Maintenance among Pacific Islanders in the United States
使用临时措施了解美国太平洋岛民体育活动的采用和维持情况
- 批准号:
10737528 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别: