Lasting Impacts: Dynamic, Fully Natural Bioprinted 3D Human Neurovascular Biomimetic Model to Study Traumatic Brain Injury Pathophysiology
持久影响:用于研究创伤性脑损伤病理生理学的动态、完全自然的生物打印 3D 人体神经血管仿生模型
基本信息
- 批准号:10916751
- 负责人:
- 金额:$ 60.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAcuteAddressAffectAlzheimer&aposs DiseaseAnimal ExperimentsAnimalsAstrocytesBiological AssayBiological ModelsBiomechanicsBiomimeticsBloodBlood - brain barrier anatomyBlood Coagulation DisordersBlood VesselsBlood brain barrier dysfunctionBostonBrainBrain InjuriesBrain PathologyCell MaturationCerebrovascular CirculationCerebrovascular systemChronicCoagulation ProcessCognitive deficitsCollaborationsCompanionsComputer SimulationDefectEconomicsEndotheliumEngineeringFunctional disorderFundingGoalsHumanImpairmentIn SituIn VitroIncubatedIndividualInjuryInvestigationLaboratoriesLifeLinkLiquid substanceLocationMapsMeasurementMechanicsMembraneMemory impairmentMicroscopicMicrovascular DysfunctionMilitary PersonnelModelingMolecularMorbidity - disease rateNerve DegenerationNervous System TraumaNeurodegenerative DisordersNeuronsOpticsOutcomePathologyPatientsPercussionPericytesPermeabilityPersonsPhasePhenotypePhysiologicalPlasmaPreparationPropertyPublic HealthResearchRiskRoleSeveritiesSiteSliceSpecimenStructureSurvivorsTauopathiesTestingTherapeuticTimeTissuesTraumaTraumatic Brain InjuryUnited States National Institutes of HealthUniversitiesVariantVascular DiseasesVisualizationWorkbehavioral impairmentbiofabricationbiomaterial compatibilitybiophysical propertiesbioprintingblood-brain barrier disruptioncell typechronic traumatic encephalopathydementia riskdisabilityexperiencefluid flowimplantationimprovedin silicoin vitro Modelin vivoindexinginduced pluripotent stem cellinnovationinstrumentinstrumentationinterestinterstitialmedical schoolsmolecular pathologymortalitymultidisciplinaryneuralneuropathologyneuropsychiatryneurovascularneurovascular couplingneurovascular unitprogramspsychosocialresponseresponse to brain injuryresponse to injuryshear stresssimulationspatiotemporaltau Proteinstau-1vascular contributionsvascular injury
项目摘要
ABSTRACT
Lasting impacts: dynamic, fully natural bioprinted 3d human neurovascular biomimetic to study traumatic
brain injury pathophysiology
Every year an estimated 2.5 million people sustain a traumatic brain injury (TBI), and many survivors experience
subsequent long-term cognitive deficits, sensorimotor impairments, and neuropsychiatric disability that result in
profound psychosocial and economic consequences for affected individuals. Acute and chronic effects of
neurotrauma represent leading causes of mortality, morbidity, and long-term disability in the US and around the
world. Although TBI is clearly defined neuropathologically, less well-defined is the relationship between the initial
impact and the resulting progression of trauma-related neurovascular pathology. This multidisciplinary multi-PI
proposal is responsive to the Trans-Agency Blood-Brain Interface Program (RFA-HL-20-021, R61/R33) and
builds on a longstanding collaboration between Lawrence Livermore National Laboratory, Boston University
School of Medicine, and the NIH/NIA-funded Boston University Alzheimer’s Disease Center to address
fundamental mechanisms underpinning acute and chronic effects of neurotrauma, including trauma-induced
microvascular injury and latent tau protein neurodegenerative pathologies associated with chronic traumatic
encephalopathy (CTE). This project will develop and characterize a human in vitro perfusable neurovascular unit
(NVU) model with the overarching goal of identifying biomechanical triggers and molecular-cellular responses to
brain injury that determine the location, severity, and progression of traumatic microvascular injury (TMI), blood-
brain barrier (BBB) disruption, and phosphorylated tau proteinopathy. To accomplish this objective, this work will
leverage an existing BBB platform to biofabricate a 3D multi-cellular dynamic human NVU biomimetic with
perfusable endothelialized vasculature. The resulting optically clear NVU platform will enable systematic
interrogation of the human cerebrovasculature, including all human NVU cell types, with spatiotemporal control
and structure-function measurements in real-time. In the R61 phase, we will modify our existing 3D-printed BBB
model to include culture of human induced pluripotent stem cell (iPSC)-derived endothelia, pericytes, astrocytes,
and neurons. Effects of cellular composition, structure-function relations, fluid flow dynamics (intravascular,
interstitial), and culture incubation conditions on iPSC maturation will be investigated. In the R61 phase, we will
develop a platform-compatible injury instrument informed by computational simulations to match loads used in
in vivo animal studies. Embedded markers in the 3D-printed model will enable direct measurement and
visualization of time-varying strain during impact as a function of vascular, glial, and neuronal pathology and
compromised function (R33 phase). In addition, we will investigate molecular, cellular, and functional effects of
secondary damage post-TBI injury. Results will be informed by companion studies in experimental animals and
clinicopathological correlation with unique human brain specimens. This project will contribute to fundamental
understanding of brain injury biomechanics and relationship to acute and chronic effects of neurotrauma in the
human brain.
抽象的
持久影响:动态、完全自然的生物打印 3D 人体神经血管仿生材料,用于研究创伤
脑损伤病理学
每年估计有 250 万人遭受创伤性脑损伤 (TBI),许多幸存者都经历过
随后的长期认知缺陷、感觉运动障碍和神经精神障碍,导致
对受影响个人造成巨大的社会心理和经济后果。
神经创伤是美国及世界各地死亡、发病和长期残疾的主要原因
尽管 TBI 在神经病理学上有明确的定义,但最初与 TBI 之间的关系尚不明确。
创伤相关神经血管病理学的影响和由此产生的进展。
该提案响应跨机构血脑接口计划(RFA-HL-20-021、R61/R33)并且
建立在劳伦斯利弗莫尔国家实验室与波士顿大学之间的长期合作基础上
医学院和 NIH/NIA 资助的波士顿大学阿尔茨海默病中心致力于解决
神经创伤(包括创伤引起的)急性和慢性影响的基本机制
与慢性创伤相关的微血管损伤和潜在 tau 蛋白神经退行性病变
该项目将开发并表征人类体外可灌注神经血管单元。
(NVU)模型的总体目标是识别生物力学触发因素和分子细胞反应
脑损伤决定了创伤性微血管损伤(TMI)的位置、严重程度和进展,血液-
脑屏障(BBB)破坏和磷酸化 tau 蛋白病为了实现这一目标,这项工作将。
利用现有的 BBB 平台生物制造 3D 多细胞动态人类 NVU 仿生体
由此产生的光学透明 NVU 平台将实现系统化。
通过时空控制询问人类脑血管系统,包括所有人类 NVU 细胞类型
在 R61 阶段,我们将修改现有的 3D 打印 BBB。
模型包括人类诱导多能干细胞 (iPSC) 衍生的内皮细胞、周细胞、星形胶质细胞、
和神经元。细胞组成、结构功能关系、流体动力学(血管内、
间质),并在 R61 阶段研究 iPSC 成熟的培养孵化条件。
开发一种平台兼容的伤害仪器,通过计算模拟来匹配使用的负载
3D 打印模型中的嵌入标记将能够直接测量和
将撞击过程中随时间变化的应变可视化为血管、神经胶质和神经元病理学的函数
此外,我们将研究功能受损(R33 期)。
TBI 损伤后的继发性损伤将通过实验动物和同伴研究得出结果。
该项目将有助于研究与独特的人脑标本的临床病理学相关性。
了解脑损伤生物力学以及与神经外伤的急性和慢性影响的关系
人类的大脑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEE E. GOLDSTEIN其他文献
LEE E. GOLDSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEE E. GOLDSTEIN', 18)}}的其他基金
Impact of Toxic Metal Exposures in Novel Genetic Mouse Models of Late-Onset Alzheimer's Disease
有毒金属暴露对迟发性阿尔茨海默病的新型基因小鼠模型的影响
- 批准号:
10901030 - 财政年份:2023
- 资助金额:
$ 60.82万 - 项目类别:
Lens β-Amyloid Biomarker for Early Detection of Preclinical Alzheimer's Disease in the Framingham Study
Framingham 研究中用于早期检测临床前阿尔茨海默病的晶状体 β-淀粉样蛋白生物标志物
- 批准号:
10214179 - 财政年份:2021
- 资助金额:
$ 60.82万 - 项目类别:
Lasting Impacts: Dynamic, Fully Natural Bioprinted 3D Human Neurovascular Biomimetic Model to Study Traumatic Brain Injury Pathophysiology
持久影响:用于研究创伤性脑损伤病理生理学的动态、完全自然的生物打印 3D 人体神经血管仿生模型
- 批准号:
10318506 - 财政年份:2021
- 资助金额:
$ 60.82万 - 项目类别:
TBI Identification and Monitoring Through Retinal Scanning
通过视网膜扫描识别和监测 TBI
- 批准号:
10593933 - 财政年份:2020
- 资助金额:
$ 60.82万 - 项目类别:
TBI identification and monitoring through retinal scanning
通过视网膜扫描进行 TBI 识别和监测
- 批准号:
10383172 - 财政年份:2020
- 资助金额:
$ 60.82万 - 项目类别:
TBI Identification and Monitoring Through Retinal Scanning
通过视网膜扫描识别和监测 TBI
- 批准号:
10593933 - 财政年份:2020
- 资助金额:
$ 60.82万 - 项目类别:
Big data and small molecules for Alzheimer's disease
阿尔茨海默病的大数据和小分子
- 批准号:
10168854 - 财政年份:2019
- 资助金额:
$ 60.82万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 60.82万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 60.82万 - 项目类别:
Validation of the Yucatan Minipig as a Preclinical Model for Wrist Bone Arthroplasty
尤卡坦小型猪作为腕骨关节置换术临床前模型的验证
- 批准号:
10574928 - 财政年份:2023
- 资助金额:
$ 60.82万 - 项目类别:
Design of the Glomerulus and bOwman cApsuLe on a chip (GOAL)
芯片上肾小球和鲍曼胶囊的设计(目标)
- 批准号:
10810038 - 财政年份:2023
- 资助金额:
$ 60.82万 - 项目类别:
Improving outcomes in endovascular treatment of intracranial aneurysms: Combining additive manufacturing, in-silico modeling, and shape memory polymers
改善颅内动脉瘤血管内治疗的效果:结合增材制造、计算机建模和形状记忆聚合物
- 批准号:
10685325 - 财政年份:2022
- 资助金额:
$ 60.82万 - 项目类别: