Mechanical programming to enhance the immunosuppressive function of mesenchymal stem cells for the treatment of graft-versus-host disease.
机械编程增强间充质干细胞的免疫抑制功能,用于治疗移植物抗宿主病。
基本信息
- 批准号:10905160
- 负责人:
- 金额:$ 39.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-07 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAcute Graft Versus Host DiseaseAdipose tissueAffectAllogenicAnimal ModelAnimalsBehaviorBiochemicalBiocompatible MaterialsBiological Response ModifiersBloodBody Weight decreasedBone MarrowBone RegenerationCanadaCell TherapyCell secretionCellsCharacteristicsChronicClinical TrialsCollaborationsCountryDataDinoprostoneElasticityElementsExhibitsExtracellular MatrixGalactose Binding LectinGoalsHematopoietic Stem Cell TransplantationHistopathologyHumanHydrogelsImmunosuppressionIntegrin BindingIntegrinsJapanLightMechanicsMediatingMemoryMesenchymalMesenchymal Stem CellsMolecularMonitorMorbidity - disease rateNew ZealandNuclear LaminNuclear TranslocationPlayPostureProductionProliferatingPropertyProphylactic treatmentRegulatory T-LymphocyteRelaxationResearchRoleSerumSignaling MoleculeSortingStressStromal CellsSurfaceSystemT cell differentiationT-Cell ProliferationT-LymphocyteTestingTherapeuticTimeTissuesTransforming Growth Factor betaTransplant RecipientsTreatment EfficacyUmbilical cord structurecell behaviorcytokineeffector T cellefficacy evaluationgraft vs host diseasehumanized mousein vivointerdisciplinary approachmanufacturemechanical propertiesmechanical signalmechanotransductionmigrationmortalitymouse modelprogrammed cell death ligand 1responserho GTP-Binding Proteinsstemtreatment strategyviscoelasticity
项目摘要
SPECIFIC AIMS
Mesenchymal stem/stromal cells (MSCs) are potent regulators of immune cells, and their immunosuppressive
function is being actively investigated for a number of therapeutic applications. In particular, it has been
demonstrated that MSCs can inhibit the proliferation of effector T cells and induce regulatory T-cell
differentiation for treating graft versus host disease (GvHD). A few MSC products have been approved by
regulatory agencies in countries outside of the U.S. However, MSCs have not always shown consistent
efficacy in GvHD clinical trials. This is in part due to the challenges of generating MSCs with consistent, high
therapeutic potency. The overarching goal of this project is to develop MSC therapies with enhanced
immunosuppressive efficacy for GvHD treatment by identifying and providing optimal microenvironment
mechanical cues in MSC production. Mechanical cues from cell microenvironment play important roles in
regulating cell behavior. For example, studies have shown that matrix stiffness directs cell activity and fate
such as migration, proliferation, and differentiation. However, matrix or material stiffness only describes their
static, elastic mechanical property. Instead of being simply elastic, natural extracellular matrix (ECM) and living
tissues are viscoelastic, exhibiting stress relaxation over different characteristic time scales (stress relaxes at
different rates). We have developed a hydrogel system that can recapitulate the stiffness and viscoelastic
behavior of different types of tissues. Using the hydrogels as culture substrates, we discovered that matrix
stress relaxation, in addition to stiffness, is an important mechanical factor regulating cell–ECM interactions
and directing MSC activities including spreading, proliferation, differentiation, and in vivo bone regeneration. In
collaboration with Dr. Kyung Sung at FDA, we recently found that substrate stress relaxation also regulates
MSC's immunosuppressive capacity and their ability to inhibit T cell proliferation; Interestingly, MSCs retained
their mechanical “memory” even after being extracted from the hydrogels (see preliminary data section). In
light of these new findings, we hypothesize that biomaterials with tailored stress relaxation properties can
provide inducing mechanical cues in MSC production to enhance MSC's immunosuppressive efficacy for
GvHD treatment. We will test this hypothesis in the following specific aims: Aim 1: Elucidate the molecular
mechanisms by which matrix stress relaxation regulates the immunosuppressive capacity of human MSCs
(hMSC) derived from bone marrow. Aim 2: Compare the effect of matrix stress relaxation on hMSCs derived
from different tissues or hMSC subpopulations sorted by integrin expression. Aim 3: Evaluate the efficacy of
hMSCs primed by viscoelastic hydrogels with different stress relaxation properties for GvHD treatment in an
animal model. This project uses multidisciplinary approaches to study hMSC mechanobiology. Successful
completion of these aims will have significant impact in understanding how matrix mechanical cues regulates
the immunosuppressive capacity of hMSCs, with the findings potentially leading to better treatment for GvHD.
具体目标
间充质干细胞/基质细胞(MSC)是免疫细胞的有效调节剂,其免疫抑制作用
其功能正在被积极研究以用于许多治疗应用。
证明 MSC 可以抑制效应 T 细胞的增殖并诱导调节性 T 细胞
一些 MSC 产品已被批准用于治疗移植物抗宿主病 (GvHD)。
美国以外国家的监管机构 然而,MSC 并不总是表现出一致的
GvHD 临床试验中的疗效这部分是由于产生一致、高的 MSC 的挑战。
该项目的总体目标是开发增强的 MSC 疗法。
通过识别和提供最佳微环境来提高 GvHD 治疗的免疫抑制功效
MSC 生产中的机械信号来自细胞微环境的机械信号在 MSC 生产中发挥着重要作用。
例如,研究表明基质硬度指导细胞活动和命运。
然而,基质或材料的刚度仅描述了它们。
静态、弹性机械特性,而不是简单的弹性、天然细胞外基质(ECM)和活性。
组织是粘弹性的,在不同的特征时间尺度上表现出应力松弛(应力松弛在
我们开发了一种可以概括刚度和粘弹性的水凝胶系统。
使用水凝胶作为培养基质,我们发现了基质的行为。
除刚度外,应力松弛也是调节细胞与 ECM 相互作用的重要机械因素
指导 MSC 活动,包括扩散、增殖、分化和体内骨再生。
我们与 FDA 的 Kyung Sung 博士合作,最近发现基质应力松弛也调节
MSC的免疫抑制能力及其抑制T细胞增殖的能力;
即使从水凝胶中提取后,它们的机械“记忆”仍然存在(参见初步数据部分)。
根据这些新发现,我们追求具有定制应力松弛特性的生物材料可以
在 MSC 生产中提供诱导机械线索,以增强 MSC 的免疫抑制功效
我们将在以下具体目标中检验这一假设: 目标 1:阐明分子机制。
基质应力松弛调节人间充质干细胞免疫抑制能力的机制
(hMSC) 源自骨髓 目标 2:比较基质应力松弛对源自骨髓的 hMSC 的影响。
目的 3:评估不同组织或 hMSC 亚群的整合素表达情况。
由具有不同应力松弛特性的粘弹性水凝胶引发的 hMSC,用于 GvHD 治疗
该项目使用多学科方法来研究 hMSC 机械生物学。
完成这些目标将对理解矩阵机械线索如何调节产生重大影响
hMSC 的免疫抑制能力,这些发现可能会导致更好的 GvHD 治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luo Gu其他文献
Luo Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luo Gu', 18)}}的其他基金
The Mechanical Properties of the Brain and Their Effect on Alzheimer's Disease
大脑的机械特性及其对阿尔茨海默病的影响
- 批准号:
10468935 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
The Mechanical Properties of the Brain and Their Effect on Alzheimer's Disease
大脑的机械特性及其对阿尔茨海默病的影响
- 批准号:
10288723 - 财政年份:2021
- 资助金额:
$ 39.4万 - 项目类别:
相似国自然基金
源自磁驱动hucMSCs的外泌体调节自噬减轻急性移植物抗宿主病内皮损伤
- 批准号:82300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
急性移植物抗宿主病中组蛋白H3K79表观遗传学修饰调控CD14+树突状细胞(DC3)分化的致病机制研究
- 批准号:82300244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
巨噬细胞HMGB1外泌体引起肠上皮细胞铁死亡在急性移植物抗宿主病中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞内EBi3通过IL-23R介导异基因造血干细胞移植后急性移植物抗宿主病的效应及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
供者干细胞样记忆T细胞(Tscm)在小鼠急性移植物抗宿主病发病中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Role of bone marrow Tregs in maintaining stromal cell function
骨髓 Tregs 在维持基质细胞功能中的作用
- 批准号:
10428667 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
Role of bone marrow Tregs in maintaining stromal cell function
骨髓 Tregs 在维持基质细胞功能中的作用
- 批准号:
10641838 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
Role of bone marrow Tregs in maintaining stromal cell function
骨髓 Tregs 在维持基质细胞功能中的作用
- 批准号:
10256793 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
Role of bone marrow Tregs in maintaining stromal cell function
骨髓 Tregs 在维持基质细胞功能中的作用
- 批准号:
10052818 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
The role of post-natal skeletal stem cells in health and disease
产后骨骼干细胞在健康和疾病中的作用
- 批准号:
8743729 - 财政年份:
- 资助金额:
$ 39.4万 - 项目类别: