Circadian clock and temporal control in nutrient metabolism
昼夜节律时钟和营养代谢的时间控制
基本信息
- 批准号:10754101
- 负责人:
- 金额:$ 45.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ARNTL geneAblationAgingAtrophicAttenuatedAutomobile DrivingAutophagocytosisCellsChIP-seqCircadian DysregulationCircadian desynchronyCoupledDefectEtiologyFRAP1 geneFunctional disorderGeneticGenetic ModelsGenetic TranscriptionGlucoseGoalsGrowthHomeostasisImpairmentInsulinInsulin ResistanceInterventionKnowledgeLabelLife StyleLinkLipidsMaintenanceMediatingMetabolicMetabolic PathwayMetabolismModelingModernizationMolecularMuscleMuscle DevelopmentMuscle FibersMuscle ProteinsMuscular AtrophyNutrientObesityOutcomeOutputPIK3CG genePathway interactionsPeriodicityPhysiologicalPlayPrevalenceProtein BiosynthesisProteinsProteomicsRegulationResearchResearch SupportResistanceRoleSignal TransductionSkeletal MuscleStimulusTestingTherapeuticTimeTranscription CoactivatorTranscriptional RegulationTranslationsWasting Syndromecircadiancircadian pacemakercircadian regulationfeedinggain of functiongenetic testingglucose metabolismimprovedinsulin sensitivitylipid metabolismloss of functionmTOR Signaling Pathwaymetabolomicsmouse modelmultiple omicsmuscle formnobiletinnovelnutrient metabolismpharmacologicpreventprotein degradationprotein metabolismproteostasisresponsesarcopeniasarcopenic obesitysensorshift worktranscriptomics
项目摘要
Project Summary
The circadian clock confers temporal control to metabolic pathways, and its disruption leads to insulin resistance
and obesity. Skeletal muscle plays a critical role in nutrient metabolism and protein homeostasis. We and others
demonstrated that the muscle-intrinsic clock regulates skeletal muscle development, growth, and metabolism.
Despite the extensive studies of circadian regulation in glucose and lipid metabolism, there is a current
knowledge gap regarding clock function in protein metabolism that determines muscle mass. In addition,
although circadian misalignment is prevalent in a modern lifestyle, potential circadian etiologies underlying
muscle wasting and impaired metabolic capacity remains unknown. We have identified a novel clock-driven
temporal control of PI3K-Akt-mTORC1 signaling in skeletal muscle that is independent of feeding-induced
activation. Surprisingly, clock disruption mimicking shiftwork resulted in progressive muscle atrophy
accompanied with impaired PI3K-Akt signaling and elevated protein turnover. Furthermore, mechanistic studies
revealed circadian clock transcriptional control of the Insulin/Igf-1-PI3K-Akt-mTOR signaling cascade. These
findings, together with prior research support a hypothesis that that the muscle-intrinsic clock confers temporal
control in PI3K-Akt-mTOR cascade to drive protein metabolism and insulin sensitivity, and this mechanism
underlies circadian disruption-induced muscle atrophy and insulin resistance. The overarching goal of this project
is to comprehensively define this newly discovered clock-PI3K-Akt-mTOR regulatory axis in muscle nutrient
homeostasis and muscle mass regulation. Specifically, we will leverage our unique clock modulation models with
multi-omics approaches to comprehensively define the molecular mechanisms responsible for and the
physiological significance of the clock-Akt-mTOR regulatory axis in protein metabolism, insulin sensitivity and
muscle mass maintenance. More importantly, we propose to test genetic and pharmacological clock-augmenting
interventions to counteract muscle anabolic and metabolic deficits induced by clock disruption. The outcome of
this proposal may uncover a circadian etiology underlying impaired metabolic capacity in sarcopenia and provide
the mechanistic basis for clock-targeting interventions.
项目概要
生物钟赋予代谢途径时间控制,其破坏会导致胰岛素抵抗
和肥胖。骨骼肌在营养代谢和蛋白质稳态中起着至关重要的作用。我们和其他人
证明肌肉内在时钟调节骨骼肌的发育、生长和新陈代谢。
尽管对葡萄糖和脂质代谢的昼夜节律调节进行了广泛的研究,但目前仍存在
关于决定肌肉质量的蛋白质代谢时钟功能的知识差距。此外,
尽管昼夜节律失调在现代生活方式中很普遍,但潜在的昼夜节律病因学
肌肉萎缩和代谢能力受损仍然未知。我们已经确定了一种新颖的时钟驱动
骨骼肌中 PI3K-Akt-mTORC1 信号传导的时间控制独立于进食诱导
激活。令人惊讶的是,模仿轮班工作的时钟中断会导致进行性肌肉萎缩
伴随着 PI3K-Akt 信号传导受损和蛋白质周转率升高。此外,机理研究
揭示了胰岛素/Igf-1-PI3K-Akt-mTOR 信号级联的生物钟转录控制。这些
研究结果与之前的研究一起支持了一个假设,即肌肉内在时钟赋予时间
控制 PI3K-Akt-mTOR 级联以驱动蛋白质代谢和胰岛素敏感性,并且该机制
是昼夜节律紊乱引起的肌肉萎缩和胰岛素抵抗的基础。该项目的总体目标
就是全面定义肌肉营养中这个新发现的时钟-PI3K-Akt-mTOR调节轴
体内平衡和肌肉质量调节。具体来说,我们将利用我们独特的时钟调制模型
多组学方法全面定义负责的分子机制和
时钟-Akt-mTOR 调节轴在蛋白质代谢、胰岛素敏感性和
肌肉质量维持。更重要的是,我们建议测试遗传和药理学时钟增强
采取干预措施来抵消生物钟干扰引起的肌肉合成代谢和代谢缺陷。结果
该提议可能揭示肌肉减少症代谢能力受损的昼夜节律病因,并提供
时钟靶向干预的机制基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ke Ma其他文献
Ke Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ke Ma', 18)}}的其他基金
Circadian clock regulation of metabolic pathways in aging
衰老过程中代谢途径的昼夜节律时钟调节
- 批准号:
10901023 - 财政年份:2023
- 资助金额:
$ 45.38万 - 项目类别:
Circadian Clock Control of Adipose Depot Development and Function
脂肪库发育和功能的昼夜节律时钟控制
- 批准号:
10062969 - 财政年份:2017
- 资助金额:
$ 45.38万 - 项目类别:
相似国自然基金
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Administrative Supplement to Award "Circadian regulation of vascular aging"
“血管老化的昼夜节律调节”奖行政补充
- 批准号:
10283788 - 财政年份:2019
- 资助金额:
$ 45.38万 - 项目类别:
Project 3: Coactivator-dependent hepatic 12h clock coordinates metabolic and stress rhythms
项目 3:共激活剂依赖性肝脏 12 小时时钟协调代谢和应激节律
- 批准号:
10153762 - 财政年份:2018
- 资助金额:
$ 45.38万 - 项目类别:
Project 3: Coactivator-dependent hepatic 12h clock coordinates metabolic and stress rhythms
项目 3:共激活剂依赖性肝脏 12 小时时钟协调代谢和应激节律
- 批准号:
10421284 - 财政年份:2018
- 资助金额:
$ 45.38万 - 项目类别:
Project 3: Peripheral and Central Molecular Clocks in Feeding, Sleep and Metabolic Aging
项目 3:进食、睡眠和代谢衰老中的外周和中枢分子钟
- 批准号:
10208662 - 财政年份:1997
- 资助金额:
$ 45.38万 - 项目类别:
Project 3: Peripheral and Central Molecular Clocks in Feeding, Sleep and Metabolic Aging
项目 3:进食、睡眠和代谢衰老中的外周和中枢分子钟
- 批准号:
9751699 - 财政年份:
- 资助金额:
$ 45.38万 - 项目类别: