Biochemical and structural characterization of the cell wall synthesis complex required for bacterial division
细菌分裂所需的细胞壁合成复合物的生化和结构表征
基本信息
- 批准号:10750639
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAntibioticsAreaBacteriaBacterial InfectionsBindingBiochemicalBiochemistryBiological AssayBostonCell WallCell divisionCellsCellular StructuresCessation of lifeCo-ImmunoprecipitationsCommunitiesComplementComplexCrystallizationDataDevelopmentDrug DesignDrug TargetingDrug resistanceEducational process of instructingEnzyme InteractionEnzymesFamilyFosteringGeneticGram-Negative BacteriaGram-Positive BacteriaGrantIn VitroInstitutionInvestigationKnowledgeLaboratoriesLigandsLipid BindingMediatingMembraneMentorsMicrobiologyModelingModificationN-Acetylmuramoyl-L-alanine AmidasePeptidoglycanPeptidoglycan glycosyltransferasePeptidyltransferasePhysiologicalPolymersPostdoctoral FellowPreparationProcessProtein FamilyProtein RegionProteinsRegulationResearch PersonnelStreptococcus pneumoniaeStructureSubstrate InteractionTeichoic AcidsTestingWorkassay developmentcareerderepressiondesignenzyme activityexperienceexperimental studyglycosyltransferasehigher educationin vitro activityin vivoinhibitorinsightmedical schoolsmembermutantnovelnovel antibiotic classpathogenpolymerizationpreventpreventable deathprotein complexreconstitutionskillsundergraduate student
项目摘要
PROJECT SUMMARY/ABSTRACT
The processes that drive bacterial cell division should be prime targets for the design of novel
antibiotics, but our understanding of how one bacterium becomes two is riddled with significant gaps that
prevent its exploitation. Nearly all bacteria possess the same five-protein complex (FtsQLB-WI) to coordinate
the synthesis of a peptidoglycan (PG) septum between dividing cells. Our laboratory has extensive experience
with the purification and modification of lipid-bound PG precursors for the reconstitution of PG synthesis in
vitro, and, we have intimate knowledge of this specific PG synthesis complex as we were the first to
characterize FtsW as a PG glycosyltransferase. We are therefore uniquely poised to resolve the mechanism by
which pathogens such as Streptococcus pneumoniae regulate the synthesis of PG during division. In Aim 1, I
will generate a structure of the synthase enzyme subcomplex, FtsW and FtsI, bound to PG precursor
substrate. FtsW is a novel member of the SEDS-family, and this structure will be the first to define how FtsW
binds PG precursors and suggest a mechanism of action. We have already reconstituted the PG synthase
activity of S. pneumoniae FtsWI in vitro and found that addition of FtsQLB is inhibitory. We hypothesize that
both protein-protein and substrate interactions are required for de-repression of the FtsQLB-WI complex. In
Aim 2, I will explore protein factors that regulate FtsWI synthase activity, including a systematic identification of
domains within the non-enzymatic subcomplex FtsQLB that are required for FtsWI regulation, as well as in vivo
co-immunoprecipitation assays against FtsQLB-WI to identify additional components required for FtsQLB-WI
de-repression. In Aim 3, I will isolate components of the peptidoglycan cell wall predicted to bind regulatory
domains within FtsQLB-WI to determine their influence on the activity of FtsQLB-WI in vitro. Together, these
aims will generate a comprehensive model of septal PG synthesis in S. pneumoniae that can inform the design
of novel antibiotics.
The work proposed here will not only grant me the expertise in biochemistry I require to become an
independent researcher, but additionally place me in proximity to other important means of professional
development. At Harvard Medical School and in the Boston area, I will have ample access to teaching and
mentoring experiences in preparation for a career in higher education. I will also foster collaborative
professional relationships within my HMS community as well as the broader microbiology and undergraduate
educator community. As a postdoctoral fellow under Dr. Suzanne Walker at HMS, I will develop the skills I
require to be a well-rounded microbiology researcher and educator at an undergraduate institution.
项目概要/摘要
驱动细菌细胞分裂的过程应该是设计新型细菌的主要目标
抗生素,但我们对一种细菌如何变成两种细菌的理解充满了巨大的差距
防止其被利用。几乎所有细菌都具有相同的五蛋白复合物(FtsQLB-WI)来协调
分裂细胞之间肽聚糖(PG)隔膜的合成。我们的实验室拥有丰富的经验
纯化和修饰脂质结合的 PG 前体,以重建 PG 合成
体外,并且,我们对这种特定的 PG 合成复合物有深入的了解,因为我们是第一个
将 FtsW 描述为 PG 糖基转移酶。因此,我们准备通过以下方式解决该机制:
肺炎链球菌等病原体在分裂过程中调节 PG 的合成。在目标 1 中,我
将生成与 PG 前体结合的合酶亚复合物 FtsW 和 FtsI 的结构
基材。 FtsW 是 SEDS 系列的新成员,该结构将第一个定义 FtsW 如何
结合 PG 前体并提出作用机制。我们已经重建了 PG 合酶
体外研究肺炎链球菌 FtsWI 的活性,发现添加 FtsQLB 具有抑制作用。我们假设
蛋白质-蛋白质和底物相互作用都是 FtsQLB-WI 复合物去抑制所必需的。在
目标 2,我将探索调节 FtsWI 合酶活性的蛋白质因子,包括系统鉴定
非酶亚复合物 FtsQLB 内的结构域是 FtsWI 调节以及体内所需的
针对 FtsQLB-WI 的免疫共沉淀分析,以确定 FtsQLB-WI 所需的其他成分
去压抑。在目标 3 中,我将分离预计能结合调节因子的肽聚糖细胞壁成分
FtsQLB-WI 中的结构域,以确定它们对 FtsQLB-WI 体外活性的影响。在一起,这些
目标将生成肺炎链球菌中间隔 PG 合成的综合模型,为设计提供信息
新型抗生素。
这里提出的工作不仅会给我提供成为一名生物化学专家所需的专业知识
独立研究员,但也让我接近其他重要的专业途径
发展。在哈佛医学院和波士顿地区,我将有充足的机会接触教学和
为高等教育职业做准备的指导经验。我还将促进协作
我的 HMS 社区内的专业关系以及更广泛的微生物学和本科生
教育者社区。作为 HMS Suzanne Walker 博士的博士后研究员,我将培养我所掌握的技能
要求成为本科院校的全面微生物学研究员和教育家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna I Weaver其他文献
Anna I Weaver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
跨区域视角下人类活动对农业抗生素排放的驱动机制及优化调控
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于污水流行病学的全国重点城市医疗用抗生素使用水平研究
- 批准号:41877508
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
典型城市区域水体中抗生素类药物迁移转化及其生态毒性研究
- 批准号:41773121
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
氟喹诺酮类抗生素受体蛋白的制备、分析方法的建立及区域环境水体的生态风险评估
- 批准号:41601552
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
水产养殖环境中ISCR元件介导的抗生素抗性基因水平传播及生态风险
- 批准号:31200398
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Structure function investigations of radical transfer and disulfide exchange in a class Ia ribonucleotide reductase
Ia类核糖核苷酸还原酶自由基转移和二硫键交换的结构功能研究
- 批准号:
10542661 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Structure function investigations of radical transfer and disulfide exchange in a class Ia ribonucleotide reductase
Ia类核糖核苷酸还原酶自由基转移和二硫键交换的结构功能研究
- 批准号:
10386378 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别: