Targeting Inflammation to Improve FGF23-mediated Mineral Metabolism in CKD

靶向炎症以改善 CKD 中 FGF23 介导的矿物质代谢

基本信息

项目摘要

Project Summary/Abstract: This NRSA proposal, tailored to Mr. Solis, provides high-quality predoctoral research training and career development centered upon his future goals. The sponsor’s excellent mentoring record, collaborations with leading bone and kidney biomedical researchers, and the outstanding environment at the IUSM and Indiana Center for Musculoskeletal Health (ICMH) will contribute to the successful completion of this project. Additionally, participation in the Preparing Future Faculty and Professionals program for ethics and grant writing courses, manuscript preparation, departmental seminars and journal clubs, as well as national meetings will enhance Mr. Solis’s career development towards becoming a well-rounded, independent investigator. Previous studies from the sponsor’s lab and others have identified gain- and loss of function mutations in Fibroblast growth factor-23 (FGF23) that resulted in severe metabolic bone diseases, placing FGF23 as a hormone central to phosphate metabolism. FGF23 is an important factor in common diseases of altered phosphate handling such as chronic kidney disease-mineral and bone disorder (CKD-MBD), with high circulating concentrations associated with patient mortality. Although progress has been made in understanding basic and clinical aspects of phosphate handling in CKD, the regulatory mechanisms governing FGF23- dependent phosphate homeostasis remain unclear. Importantly, chronic inflammation arises in CKD with tissue damage and increased production of inflammatory cytokines. It is known that specific cytokines signal through NF-κB-mediated mechanisms, however how this pathway influences FGF23 actions is unknown. Indeed, both renal inflammation and elevated FGF23 are associated with poor outcomes in CKD, therefore identifying regulatory mechanisms interconnecting FGF23 bioactivity and pro-inflammatory cytokines could provide targets for therapeutic intervention. Our initial results strongly support novel interactions between these pathways and FGF23 bioactivity. Thus, my central hypothesis is: NF-κB activity negatively regulates kidney FGF23-mediated mineral metabolism, and TNFα driven inflammatory responses exacerbate this effect in CKD. In Aim 1, the mechanisms dictating NF-κB regulation of FGF23 bioactivity will be tested in vitro; and Aim 2 will test TNF cytokines on FGF23-dependent mineral metabolism in novel models of FGF23 overexpression and in CKD with genetically ablated TNF signaling. Using these systems, Mr. Solis will gain new research skills in gene targeting and utilizing state of the art translational mouse models. Collectively, this proposal will provide excellent research, ethics, and written and oral presentation training to Mr. Solis, as well as test important disease mechanisms that result in endocrine disturbances of mineral metabolism.
项目摘要/摘要:这项 NRSA 提案专为 Solis 先生量身定制,提供高质量的博士前课程 研究培训和职业发展以他的未来目标为中心。 记录、与领先的骨骼和肾脏生物医学研究人员的合作以及出色的环境 IUSM 和印第安纳肌肉骨骼健康中心 (ICMH) 将为成功完成做出贡献 此外,还参与了“为未来教师和专业人员做好道德准备”计划。 和资助写作课程、手稿准备、部门研讨会和期刊俱乐部以及国家 会议将促进索利斯先生的职业发展,使其成为一名全面、独立的人 申办者实验室和其他人之前的研究已经确定了功能的获得和丧失。 成纤维细胞生长因子 23 (FGF23) 突变导致严重的代谢性骨病, FGF23作为磷酸盐代谢的核心激素,是常见疾病的重要因素。 改变磷酸盐处理,例如慢性肾病-矿物质和骨病(CKD-MBD), 尽管在理解方面已取得进展,但循环浓度与患者死亡率相关。 CKD 磷酸盐处理的基本和临床方面,FGF23 的调控机制 重要的是,CKD 中会出现组织慢性炎症。 众所周知,特定细胞因子通过信号传导。 NF-κB 介导的机制,但该途径如何影响 FGF23 的作用实际上尚不清楚。 肾脏炎症和 FGF23 升高与 CKD 的不良预后相关,因此确定 FGF23生物活性和促炎细胞因子相互关联的调控机制可以提供靶点 我们的初步结果强烈支持这些途径之间的新相互作用。 因此,我的中心假设是:NF-κB 活性负向调节肾脏 FGF23 介导的活性。 矿物质代谢和 TNFα 驱动的炎症反应加剧了 CKD 中的这种效应。 NF-κB 调节 FGF23 生物活性的机制将在体外进行测试,Aim 2 将测试 TNF; 细胞因子对 FGF23 过表达新模型和 CKD 中 FGF23 依赖性矿物质代谢的影响 使用这些系统,Solis 先生将获得基因靶向方面的新研究技能。 总的来说,该提案将利用最先进的翻译小鼠模型。 为索利斯先生提供研究、伦理、书面和口头演讲培训,以及测试重要的疾病 导致矿物质代谢内分泌紊乱的机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emmanuel Solis其他文献

Emmanuel Solis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
  • 批准号:
    82303710
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
  • 批准号:
    82302368
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
  • 批准号:
    42307523
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
  • 批准号:
    82302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
  • 批准号:
    82373004
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Mitochondrial proton leak and neonatal brain injury
线粒体质子泄漏与新生儿脑损伤
  • 批准号:
    10724518
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Role of Sarm1 in TBI-accentuated C9orf72 Frontotemporal Dementia
Sarm1 在 TBI 加重的 C9orf72 额颞叶痴呆中的作用
  • 批准号:
    10646932
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
CD38 modulation of NAD metabolism driving scleroderma pathogenesis
CD38 调节 NAD 代谢驱动硬皮病发病机制
  • 批准号:
    10733929
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Circadian SCN-Liver Axis in the Neuroendocrine Response to Calorie Restriction
昼夜节律 SCN-肝轴对热量限制的神经内分泌反应
  • 批准号:
    10585791
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
Mechanism of mitochondria-induced proteostatic signaling and progressive muscle atrophy during aging.
衰老过程中线粒体诱导的蛋白质抑制信号传导和进行性肌肉萎缩的机制。
  • 批准号:
    10825174
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了