Transcriptomics compendia for the study of strain-level genetic diversity of the human skin microbiome
用于研究人类皮肤微生物组菌株水平遗传多样性的转录组学概要
基本信息
- 批准号:10751097
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2026-09-29
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsBacteriaBenchmarkingBiological AssayCRISPR interferenceCase StudyCommunitiesComplexCuesDataData SetDependenceDrug ToleranceEpidermisEssential GenesGene ExpressionGenerationsGenesGeneticGenetic TranscriptionGenetic VariationGenomicsGoalsGrowthHospitalizationHospitalsHourHumanHuman MicrobiomeIn VitroKnock-outKnowledgeLaboratory FindingLife StyleLinkMachine LearningMethodologyMethodsMicrobeMicrobial GeneticsModelingMusNatureOrganismOutcomePathogenesisPathogenicityPatternPhenotypeProcessResearchRoleSkinStaphylococcus aureusStaphylococcus epidermidisStressSystemTechniquesTechnologyTestingVirulenceWorkbiological adaptation to stresscomputational pipelinescomputerized toolsdata integrationexperimental studyfitnessgene functiongenetic manipulationgenome-wideknock-downmembermicrobialmicrobiomemultiple omicsoverexpressionpathogenphenotypic dataresponseskin microbiomestress tolerancestressortherapeutic targettooltool developmenttranscription factortranscriptometranscriptome sequencingtranscriptomicstransfer learningunsupervised learningwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
Staphylococcus epidermidis is found across human skin as a common commensal but is also a hospital-acquired
pathogen. This duality makes this microbe a considerable pathogen and is likely due to the immense genetic
diversity that exists across its many strains. However, our understanding of the functional consequences of this
genetic diversity is limited in part due to significant gaps in gene functional characterization (over 25% of genes
have no known functions) and in part due to dynamic environmental effects of complex polymicrobial settings,
in which S. epidermidis is nearly always found, that can influence gene expression, function and virulence.
However, a comprehensive analysis of all gene functions in all S. epidermidis strains across multiple
pathogenicity-relevant environmental conditions would present a massive and intractable search space.
Systematic assessments of gene function can be generated by multiple `omics approaches: e.g., transcriptional
data and gene essentiality screen data can be readily generated for all genes irrespective of their annotation
status and can be interpreted within the context of genetic background and environmental conditions, is a
powerful tool for large-scale gene characterization. Currently, a limited set of transcriptional and gene fitness
data exists for a few strains of S. epidermidis, but extensive analogous data has been generated for its more
deeply studied cousin, skin pathogen S. aureus. New algorithms that could use existing data to transfer
knowledge from characterized genes, including those present in S. aureus, to lesser explored genes, including
strain-specific genes, would rapidly predict relevant gene functions that could then be tested experimentally.
Thus, my goal in this proposal is to develop computational tools that leverage existing transcriptomic
and gene essentiality data from S. aureus and S. epidermidis to identify functions for uncharacterized
genes in S. epidermidis that could determine a pathogenic vs. commensal lifestyle. In Aim 1 I will use
transfer learning to derive putative gene functions, benchmark the limits of this method with RNA-seq data
collected from multiple strains of S. epidermidis grown in polymicrobial communities on reconstructed human
epidermis, and assess the functional characterizations produced by this tool by testing the contributions to growth
in a phenotypic array with stressors and epistatic interactions with stress responsive transcription factor SrrA of
genes suggested to be important in multiple stress responses, as a case study. In Aim 2 I will use similar
algorithms as in Aim 2 but include gene essentiality data to derive condition-specific gene essentiality cliques
then validate gene characterization cliques using gene knock-downs and phenotype arrays. The work proposed
here presents a framework for the development of tools for rapid hypothesis generation paired with focused,
experimental hypothesis testing to identify functional consequences of genetic diversity across strains of the
perplexing pathogen S. epidermidis.
项目概要/摘要
表皮葡萄球菌作为一种常见的共生菌存在于人类皮肤中,但也是医院获得性的
病原。这种二元性使这种微生物成为一种重要的病原体,并且可能是由于巨大的遗传基因
其许多品系中存在多样性。然而,我们对这种功能后果的理解
遗传多样性受到限制,部分原因是基因功能特征存在显着差距(超过 25% 的基因
没有已知的功能),部分原因是复杂的多微生物环境的动态环境影响,
其中几乎总是发现表皮葡萄球菌,它可以影响基因表达、功能和毒力。
然而,对跨多个表皮葡萄球菌菌株的所有基因功能进行全面分析
与致病性相关的环境条件将带来巨大且棘手的搜索空间。
基因功能的系统评估可以通过多种“组学”方法进行:例如转录组学方法
可以轻松生成所有基因的数据和基因必要性筛选数据,无论其注释如何
状态并且可以在遗传背景和环境条件的背景下进行解释,是一个
用于大规模基因表征的强大工具。目前,一组有限的转录和基因适应性
存在一些表皮葡萄球菌菌株的数据,但更多的类似数据已经生成。
深入研究了皮肤病原体金黄色葡萄球菌的表亲。可以使用现有数据传输的新算法
从特征基因(包括金黄色葡萄球菌中存在的基因)到较少探索的基因(包括
菌株特异性基因将快速预测相关基因功能,然后可以通过实验进行测试。
因此,我在本提案中的目标是开发利用现有转录组学的计算工具
以及来自金黄色葡萄球菌和表皮葡萄球菌的基因必要性数据,以确定未表征的功能
表皮葡萄球菌中可以决定致病性与共生生活方式的基因。在目标 1 中我将使用
转移学习推导假定的基因功能,用 RNA-seq 数据衡量该方法的局限性
从在重建人体上的多种微生物群落中生长的多种表皮葡萄球菌菌株中收集
表皮,并通过测试对生长的贡献来评估该工具产生的功能特征
在具有应激源的表型阵列中以及与应激反应转录因子 SrrA 的上位相互作用
作为案例研究,基因在多种应激反应中发挥着重要作用。在目标 2 中我将使用类似的
算法与目标 2 相同,但包含基因必要性数据以导出特定条件的基因必要性团
然后使用基因敲除和表型阵列验证基因表征派系。拟议的工作
这里提出了一个开发工具的框架,用于快速生成假设,并结合有针对性的、
实验假设检验,以确定跨菌株遗传多样性的功能后果
令人困惑的病原体表皮葡萄球菌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgia Doing其他文献
Georgia Doing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
BacRelate:一款加速细菌群体基因组学研究的新算法工具
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
BacRelate: 一款加速细菌群体基因组学研究的新算法工具
- 批准号:32170640
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于深度卷积生成对抗网络算法的肺炎细菌sRNA识别及潜在的药物靶标研究
- 批准号:61903107
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于粒计算的电-气互联能源系统低碳经济调度
- 批准号:61873225
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于紫外激光诱导荧光的海洋细菌原位检测机理研究
- 批准号:41776180
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Multiple targets for beta adrenergic antagonist mediate wound healing
β 肾上腺素能拮抗剂的多个靶点介导伤口愈合
- 批准号:
10482306 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Multi-omic signatures of gut dysbiosis and cardiovascular comorbidities associated with HIV infection
与 HIV 感染相关的肠道菌群失调和心血管合并症的多组学特征
- 批准号:
10762411 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Aging Microbiome, Immunosenescence, and risk of Multi-drug Resistant Organism Colonization and Infection in the Nursing Home
疗养院微生物群老化、免疫衰老以及多重耐药微生物定植和感染的风险
- 批准号:
10584709 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Revealing the role of blood microbiome in childhood asthma
揭示血液微生物组在儿童哮喘中的作用
- 批准号:
10590805 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Multispecies aggregates from human dental plaque nucleate highly diverse spatially structured oral biofilms on saliva coated surfaces
来自人类牙菌斑的多物种聚集体在唾液涂层表面上形成高度多样化的空间结构口腔生物膜
- 批准号:
10679723 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别: