A decision tool to inform the optimal use of non-pharmaceutical interventions during the COVID-19 pandemic
一个决策工具,用于告知在 COVID-19 大流行期间如何最佳使用非药物干预措施
基本信息
- 批准号:10738630
- 负责人:
- 金额:$ 22.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-25 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressAffectBenchmarkingCOVID-19COVID-19 pandemicCOVID-19 testCessation of lifeClinicalCommunicable DiseasesCommunicationConsumptionCost Effectiveness AnalysisDataDecision ModelingEconomicsEducationEffectivenessEpidemiologyExposure toFatigueFutureGeographyHealthHealth Care VisitHealth InsuranceHospitalizationImmune responseImmunizationInfluenzaInfluenza A Virus, H1N1 SubtypeInterruptionInterventionLiftingMasksMeasuresMental HealthMethodsMissionModelingMorbidity - disease rateOutcomePersonsPlayPoliciesPolicy MakerPoliticsPopulationPublic HealthQuality-Adjusted Life YearsQuarantineRecommendationRelaxationResearchRoleSARS-CoV-2 exposureSARS-CoV-2 positiveSARS-CoV-2 transmissionSamplingScheduleSchoolsSocial DistanceSocietiesSourceSpecific qualifier valueStructureSubstance Use DisorderTarget PopulationsTimeUnited StatesUnited States National Institutes of HealthVaccinesVariantVirusWeightadverse outcomeanalytical toolcostdesigneconomic disparityepidemic responseepidemiologic dataevidence baseexperienceexperimental studyhealth disparityimprovedincome insuranceinnovationintervention costmarginalizationmembermortalitynovelpandemic diseasepandemic influenzapandemic responsepathogen exposurepopulation healthpredictive modelingprevious pandemicprogramsschool closureseasonal influenzasocialsociodemographicstoolvaccine-induced immunity
项目摘要
PROJECT SUMMARY/ABSTRACT
As the prospect for the elimination of COVID-19 in the near future remains uncertain, non-pharmaceutical
interventions (NPIs) such as limiting social gatherings, quarantine after exposure to the virus, and school
closure, will continue to play important roles in mitigating the morbidity and mortality associated with the
pandemic. Since these interventions impose immense economic, social, and health-related costs, their use
should be recommended only when epidemic control benefits outweigh their adverse consequences. Our
overall objective in this proposal is to develop an analytical decision tool to optimize the use of NPIs based on
latest information related to the local epidemiology of COVID-19, the effectiveness of different NPIs, and the
population’s stated disutility associated with these interventions. This decision tool is structured to provide a
transparent mechanism to communicate the rationale for the current policy regarding the use of NPIs and the
conditions under which the policy would change. To develop our decision tools, this proposal has three specific
aims: 1) to develop state-level decision models that identify the optimal combination of NPIs, in real-time, and
based on the projected loss in the quality-adjusted life-years (QALYs) and the disutility borne by the population
under various combinations of NPIs under various combinations of NPIs; 2) to design, conduct, and analyze
discrete-choice experiments to estimate the disutility weights of different NPIs as borne by population members
due to social, economic, and health consequences of these programs; and 3) to estimate the societal tolerance
for loss in QALYs due to existing infectious diseases without triggering NPIs. This tolerance threshold can be
estimated using historical data related to past pandemic and seasonal influenza and will serve as a benchmark
to decide when the burden of COVID-19 is low enough to lift all NPIs, at least for a short term. The research
proposed in this project is innovative as it develops a novel, principled approach to consolidate real-time data
from three different sources to optimize the use of NPIs: 1) COVID-19 cases, hospitalizations, and deaths as
projected by existing and new predictive models of COVID-19 pandemic, 2) effectiveness of various NPIs in
breaking the transmission of SARS-CoV-2, and 3) disutility weights of NPIs directly elicited from target
populations. The proposed research is significant because it meets the critical needs of policymakers to
identify evidence-based and real-time recommendations regarding the efficient use of NPIs to contain the
burden of COVID-19. The methods and decision tools developed as part of this project could also be used in
responding to other existing and future infectious threats where NPIs are employed.
项目概要/摘要
由于在不久的将来消除 COVID-19 的前景仍不确定,非药物
干预措施 (NPI),例如限制社交聚会、接触病毒后的隔离以及上学
关闭,将继续在减轻与该病相关的发病率和死亡率方面发挥重要作用
由于这些干预措施造成了巨大的经济、社会和健康相关成本,因此它们的使用
只有当疫情控制的益处大于其不利后果时才应推荐。
该提案的总体目标是开发一种分析决策工具,以优化基于 NPI 的使用
与当地 COVID-19 流行病学、不同 NPI 的有效性以及
该决策工具旨在提供与这些干预措施相关的人口的负效用。
透明的机制,用于传达有关使用 NPI 的当前政策的基本原理和
为了开发我们的决策工具,该提案提出了三个具体条件。
目标:1) 开发州级决策模型,实时识别 NPI 的最佳组合,并
基于质量调整生命年 (QALY) 的预计损失和人口承担的负效用
2)设计、实施和分析
离散选择实验来估计人口成员承担的不同非营利机构的负效用权重
由于这些计划的社会、经济和健康后果;以及 3) 估计社会容忍度
对于由于现有传染病而导致的 QALY 损失而不触发 NPI,此耐受阈值可以是。
使用与过去大流行和季节性流感相关的历史数据进行估计,并将作为基准
确定何时 COVID-19 的负担足够低以减轻所有非营利机构的负担,至少在短期内如此。
该项目中提出的方法具有创新性,因为它开发了一种新颖的、有原则的方法来整合实时数据
来自三个不同来源的数据,以优化 NPI 的使用:1) COVID-19 病例、住院和死亡情况
根据现有和新的 COVID-19 大流行预测模型进行预测,2) 各种 NPI 的有效性
打破 SARS-CoV-2 的传播,以及 3)直接从目标引出的 NPI 的负效用权重
拟议的研究意义重大,因为它满足了政策制定者的关键需求。
确定有关有效利用 NPI 的基于证据的实时建议,以遏制
作为该项目一部分开发的方法和决策工具也可用于
应对 NPI 参与的其他现有和未来的感染威胁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza YAESOUBI其他文献
Reza YAESOUBI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza YAESOUBI', 18)}}的其他基金
Enhancing surveillance systems to slow the spread of antimicrobial-resistant gonorrhea in the United States
加强监测系统以减缓抗菌药物耐药性淋病在美国的传播
- 批准号:
10200650 - 财政年份:2020
- 资助金额:
$ 22.42万 - 项目类别:
Enhancing surveillance systems to slow the spread of antimicrobial-resistant gonorrhea in the United States
加强监测系统以减缓抗菌药物耐药性淋病在美国的传播
- 批准号:
10031094 - 财政年份:2020
- 资助金额:
$ 22.42万 - 项目类别:
Enhancing surveillance systems to slow the spread of antimicrobial-resistant gonorrhea in the United States
加强监测系统以减缓抗菌药物耐药性淋病在美国的传播
- 批准号:
10415148 - 财政年份:2020
- 资助金额:
$ 22.42万 - 项目类别:
Enhancing surveillance systems to slow the spread of antimicrobial-resistant gonorrhea in the United States
加强监测系统以减缓抗菌药物耐药性淋病在美国的传播
- 批准号:
10623254 - 财政年份:2020
- 资助金额:
$ 22.42万 - 项目类别:
Improving the control of multidrug-resistant tuberculosis through targeted screening and use of novel anti-tuberculosis drugs
通过针对性筛选和使用新型抗结核药物提高耐多药结核病的控制
- 批准号:
9261472 - 财政年份:2016
- 资助金额:
$ 22.42万 - 项目类别:
Improving the control of multidrug-resistant tuberculosis through targeted screening and use of novel anti-tuberculosis drugs
通过针对性筛选和使用新型抗结核药物提高耐多药结核病的控制
- 批准号:
9109823 - 财政年份:2016
- 资助金额:
$ 22.42万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 22.42万 - 项目类别:
Developing RNA Vaccines to Treat Peanut Hypersensitivity
开发治疗花生过敏的 RNA 疫苗
- 批准号:
10570339 - 财政年份:2023
- 资助金额:
$ 22.42万 - 项目类别:
The role of pathogen-experienced macrophage subsets in mediating lung immunity and heterologous protection
经历病原体的巨噬细胞亚群在介导肺免疫和异源保护中的作用
- 批准号:
10753773 - 财政年份:2023
- 资助金额:
$ 22.42万 - 项目类别:
Multiplexed detection of cell-free M. Tuberculosis DNA and its drug-resistant variants in blood
血液中无细胞结核分枝杆菌 DNA 及其耐药变异体的多重检测
- 批准号:
10639855 - 财政年份:2023
- 资助金额:
$ 22.42万 - 项目类别:
Impact of SARS-CoV-2 infection on respiratory viral immune responses in children with and without asthma
SARS-CoV-2 感染对患有和不患有哮喘的儿童呼吸道病毒免疫反应的影响
- 批准号:
10568344 - 财政年份:2023
- 资助金额:
$ 22.42万 - 项目类别: