Understanding the Role of the Integrated Stress Response in tRNA Synthetase-associated Charcot-Marie-Tooth Disease
了解综合应激反应在 tRNA 合成酶相关夏科-马里-图思病中的作用
基本信息
- 批准号:10740335
- 负责人:
- 金额:$ 12.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAmino AcidsAmino Acyl-tRNA SynthetasesAutopsyAxonBindingBiological ModelsCareer Transition AwardCell FractionCell LineCellsCharcot-Marie-Tooth DiseaseChargeClustered Regularly Interspaced Short Palindromic RepeatsDataDefectDemyelinationsDiseaseDistalDrug usageEIF-2alphaEngineeringEnsureEnzymesEventFGF21 geneFamilyFunctional disorderGDF15 geneGene ExpressionGene FamilyGenesGenetic EngineeringGoalsHereditary DiseaseHistologyHumanHuman EngineeringImmunofluorescence ImmunologicIn VitroInheritedKnock-outLigaseLinkMammalian GeneticsMeasuresMediatingMentorsMethodsModelingMorphologic artifactsMotorMotor NeuronsMusMutationNerve DegenerationNeuromuscular DiseasesNeuromuscular JunctionNeuronal DysfunctionNeuropathyPaperPathogenesisPathogenicityPathologyPathway interactionsPatientsPeptide Initiation FactorsPeripheral NervesPeripheral Nervous System DiseasesPersonsPhasePhenotypePhosphorylationPhosphotransferasesPhysiologyPostdoctoral FellowProductionProtein BiosynthesisProteinsProteomicsPublishingQuantitative Reverse Transcriptase PCRRNA InterferenceRare DiseasesReagentResource DevelopmentReview LiteratureRibosomesRoleSamplingScienceSeriesSerumSkeletal MuscleSourceSpinal CordSystemTestingThe Jackson LaboratoryTherapeuticTherapeutic InterventionTissue SampleTooth DiseasesTrainingTransfer RNATransgenic MiceTranslationsTyrosine-tRNA LigaseUp-RegulationVariantWestern BlottingWorkYARS geneafferent nervebiological adaptation to stresscareercareer developmentcausal variantdata integrationdifferential expressiondirected differentiationdisease phenotypedisease-causing mutationdominant genetic mutationexperimental studyfibroblast growth factor 21gene replacementhuman diseasehuman stem cellsin vivoinduced pluripotent stem cellmouse modelmutantneuromuscularneuronal cell bodynovel therapeuticsoverexpressionpreventprotein expressionresponsesensorstem cell modeltargeted treatmenttherapeutic evaluationtherapeutic targettooltranscription factortranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY
This proposal will address the mechanisms underlying neuromuscular degeneration in Charcot-Marie-Tooth
disease (CMT). CMT is a genetically and phenotypically heterogeneous neuromuscular disorder with causative
mutations found in over 100 genes. While considered a rare disease, CMT is the most common inherited disorder
of the peripheral nervous system, affecting ~1 in 3,500 people worldwide. Dominant mutations in 6 different tRNA
synthetases (aaRSs) cause forms of CMT (aaRS-CMT), making them the largest family of CMT-associated
genes. Each of these genes is involved in protein synthesis suggesting a common mechanism that leads to
defects in protein production and ultimately CMT pathologies.
Our recently published work uncovered a potential mechanism underlying aaRS-CMT. We found that mutant
aaRSs inappropriately sequester tRNAs from the ribosome, which stalls ribosome function and activates an
integrated stress response (ISR) via a sensor protein, GCN2. ISR activation causes two major cellular events:
1) shutdown of a major form of protein synthesis and, 2) upregulation of the transcription factor, ATF4, and its
target genes. The relative contributions of each of these events is currently unknown.
One goal of this project is to determine the role of ATF4 and target genes in the pathophysiology observed in
aaRS-CMT. Preliminary results show that ATF4 overexpression is toxic to motor neurons and produces a CMT-
like phenotype in mice, evidence that ATF4 could be a viable therapeutic target for aaRS-CMT. In Aim 1 we will
manipulate ATF4 expression levels in validated mouse models of aaRS-CMT to determine whether the disease
pathology is driven by decreased protein translation or by increased expression of the ATF4 gene.
To advance toward therapeutic applications we need to establish that human motor neurons also activate the
ISR in response to aaRS-CMT mutations. Therefore, in Aim 2 we will establish and validate human induced
pluripotent stem cell (hiPSC)-derived motor neuron cultures which have been genetically engineered to model
aaRS-CMT. We will also test therapeutic strategies in these human cell-based models. Interestingly, ATF4
expression is common in many different types of neurodegeneration. Therefore, in Aim 3, we will integrate data
from ATF4 mice in Aim 1, and hiPSC-derived motor neurons in Aim 2 to identify common genes and cellular
pathways involved in ATF4-mediated neurodegeneration. These hiPSC-based models will be a powerful tool to
help identify and develop new targets or pathways for potential therapeutic interventions.
This MOSAIC (Maximizing Opportunities for Scientific and Academic Independent Careers) Postdoctoral Career
Transition Award to Promote Diversity will be supported by excellent career development resources and a
mentoring team of globally recognized experts in CMT (R.W. Burgess) and human stem cells (M.F. Pera) at The
Jackson Laboratory for Mammalian Genetics.
项目概要
该提案将解决腓骨肌萎缩症神经肌肉变性的潜在机制
疾病(CMT)。 CMT 是一种遗传和表型异质性神经肌肉疾病,其病因
在 100 多个基因中发现了突变。虽然 CMT 被认为是一种罕见疾病,但它是最常见的遗传性疾病
周围神经系统的疾病,影响全球约 3,500 人中的 1 人。 6 种不同 tRNA 的显性突变
合成酶 (aaRS) 引起各种形式的 CMT (aaRS-CMT),使其成为 CMT 相关的最大家族
基因。这些基因中的每一个都参与蛋白质合成,这表明有一个共同的机制导致
蛋白质生产缺陷以及最终的 CMT 病理学。
我们最近发表的工作揭示了 aaRS-CMT 的潜在机制。我们发现了突变体
aaRS 不恰当地从核糖体中隔离 tRNA,从而阻碍核糖体功能并激活
通过传感器蛋白 GCN2 进行综合应激反应 (ISR)。 ISR 激活会导致两个主要的细胞事件:
1) 蛋白质合成主要形式的关闭,2) 转录因子 ATF4 及其相关蛋白的上调
目标基因。这些事件的相对贡献目前尚不清楚。
该项目的目标之一是确定 ATF4 和靶基因在观察到的病理生理学中的作用
aaRS-CMT。初步结果表明,ATF4 过度表达对运动神经元具有毒性,并产生 CMT-
与小鼠的表型一样,有证据表明 ATF4 可能是 aaRS-CMT 的可行治疗靶点。在目标 1 中,我们将
在经过验证的 aaRS-CMT 小鼠模型中操纵 ATF4 表达水平,以确定该疾病是否
病理学是由蛋白质翻译减少或 ATF4 基因表达增加驱动的。
为了推进治疗应用,我们需要确定人类运动神经元也激活
ISR 响应 aaRS-CMT 突变。因此,在目标 2 中,我们将建立并验证人类诱导的
多能干细胞 (hiPSC) 衍生的运动神经元培养物,经过基因工程改造以建模
aaRS-CMT。我们还将在这些基于人类细胞的模型中测试治疗策略。有趣的是,ATF4
表达在许多不同类型的神经变性中很常见。因此,在目标3中,我们将整合数据
来自 Aim 1 中的 ATF4 小鼠和 Aim 2 中的 hiPSC 衍生运动神经元,以识别常见基因和细胞
参与 ATF4 介导的神经变性的途径。这些基于 hiPSC 的模型将成为一个强大的工具
帮助确定和开发潜在治疗干预的新目标或途径。
这个 MOSAIC(科学和学术独立职业机会最大化)博士后职业
促进多元化转型奖将得到优秀的职业发展资源和
由全球公认的 CMT (R.W. Burgess) 和人类干细胞 (M.F. Pera) 专家组成的指导团队
杰克逊哺乳动物遗传学实验室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Hines其他文献
Timothy Hines的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
The role of beta-cell crinophagy in generating diabetogenic neoepitopes
β细胞吞噬在产生糖尿病新表位中的作用
- 批准号:
10733153 - 财政年份:2023
- 资助金额:
$ 12.22万 - 项目类别:
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 12.22万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 12.22万 - 项目类别:
Human iPSC-derived Podocytes to Study APOL1 High-Risk Variants
人 iPSC 衍生的足细胞用于研究 APOL1 高风险变异体
- 批准号:
10607362 - 财政年份:2023
- 资助金额:
$ 12.22万 - 项目类别:
Non-canonical mechanisms of gene regulation by the histone demethylase KDM5
组蛋白去甲基化酶 KDM5 基因调控的非典型机制
- 批准号:
10746913 - 财政年份:2023
- 资助金额:
$ 12.22万 - 项目类别: