Neural Recording and Simulation Tools to Address the Mesoscale Gap
解决中尺度差距的神经记录和模拟工具
基本信息
- 批准号:10739544
- 负责人:
- 金额:$ 448.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAerosolsAmplifiersAreaAuditoryAuditory areaAuditory systemBiological ModelsBiophysicsBrainChronicClassificationClinicalCochleaCommunitiesComplexComprehensionComputer softwareDataDevice or Instrument DevelopmentDevicesDiagnosisDiagnosticDiscriminationDura MaterElasticityElastomersElectrodesElectroencephalographyElectronicsElectrophysiology (science)ElementsEpilepsyEvaluationFilmFrequenciesGenerationsHistologicHumanInferior ColliculusInstitutionLateralLeadLengthLocationLongevityMacacaMapsMeasurementMeasuresMethodsMicroelectrodesMiniaturizationModelingModificationMotorNeurobiologyNeurosciencesNoiseOperative Surgical ProceduresOutputPathologyPerformancePrintingProcessPublishingRattusResolutionRiskRodentSignal TransductionSiteSoftware ToolsSourceSpeechSystemTechnologyTestingThalamic structureThinnessTimeUtahValidationWorkauditory stimulusbiophysical modelbrain computer interfacedensitydesignelastomericexpectationexperimental studyflexibilityimprovedin vivoinsightmanufacturemicroelectronicsmillimetermultidisciplinaryneuralnext generationnovelnovel strategiesopen sourceresponsesensorsensory systemsimulationsoftware developmentsource localizationtoolvirtualvoltage
项目摘要
Abstract
We have designed a novel approach to perform multi-scale recordings in the brain across regions and depths. This tool, referred to as DISC for its directional and scalable sensing, is an array of microelectrodes surrounding the lead body and designed to maximize the phenomenon of “substrate shielding”. Electro-quasistatic modeling and in vivo data demonstrate significant improvements over microwires and ring electrodes, including (i) signal amplitude, (ii) signal-to-noise ratio, and (iii) source separation in classification testing. DISC measures local field potentials in stereo and with significant amplification, which is especially powerful in isolating sources at the mesoscale. Several critical challenges for the propagation of this technology are the inherent limitations in photolithographic manufacturing methods, and our continuing inability to relate the local field potential with detailed circuit function. To address these two challenges, we will develop a revolutionary manufacturing method for microelectronics based on aerosol jet printing (Aim 1) and develop a biophysical model that can predict specific voltage outputs (Aim 2). The amplification and directionality of DISC when combined with biophysical forward models will be a unique and power tool to improve the utility of the local field potential. The validation of the hardware and software tools will be performed using chronic rat and macaque auditory experiments. DISC will demonstrate both laminar and network-wide recordings in the auditory core during audio stimulation. We will analyze the ability of DISC recordings to discriminate the best frequency circuits and contrast this with a variety of virtual macroelectrodes, including the ring electrode currently used in sEEG. We believe this multidisciplinary work will culminate in 3 critical tools being made available to the neuroscience and clinical communities: (1) a stereotactically-guided depth array capable of chronic, low-noise wideband recordings that excel at high-resolution mesoscale information; (2) a detailed, multi-scale forward model (NetPyNE/Brainstorm pipeline) that produces simulated voltage readings specific to several device types including DISC; and (3) a high-resolution inverse model, which will extend source localization to mesoscale voltage inputs. The software development will be open-source.
抽象的
我们设计了一种新颖的方法来在大脑中进行跨区域和深度的多尺度记录,该工具因其定向和可扩展的传感而被称为 DISC,是围绕铅体的微电极阵列,旨在最大限度地发挥这种现象。 “基底屏蔽”。电准静态模型和体内数据证明了微线和环形电极的显着改进,包括(i)信号幅度,(ii)信噪比,以及(iii)分类测试中的源分离。 DISC 以立体方式测量局部场电位并具有显着的放大效果,这在隔离介观尺度的源方面尤其强大,该技术传播的几个关键挑战是光刻制造方法的固有限制,以及我们仍然无法将局部场联系起来。为了解决这两个挑战,我们将开发一种基于气溶胶喷射印刷的革命性微电子制造方法(目标1),并开发一种可以预测特定电压输出的生物物理模型(目标1)。 2). DISC 与生物物理正向模型相结合时的放大和方向性将成为提高局部场潜力的实用性的独特且强大的工具,将使用慢性大鼠和猕猴听觉实验来进行硬件和软件工具的验证。 DISC 将在音频刺激过程中演示听觉核心的层流和网络范围记录,我们将分析 DISC 记录区分最佳频率电路的能力,并将其与各种虚拟宏电极(包括目前的环形电极)进行对比。我们相信这项多学科工作最终将为神经科学和临床界提供 3 个关键工具:(1) 立体定向深度阵列,能够进行长期、低噪声宽带记录,在高分辨率介尺度上表现出色。 (2) 详细的多尺度正向模型(NetPyNE/Brainstorm 管道),可生成特定于多种设备类型(包括 DISC)的模拟电压读数;以及 (3) 高分辨率逆模型,将源定位扩展到中尺度电压输入,软件开发将是开源的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Compton Mosher其他文献
John Compton Mosher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Compton Mosher', 18)}}的其他基金
Device-Independent Acquisition and Real Time Spatiotemporal Analysis of Clinical Electrophysiology Data
临床电生理学数据的独立于设备的采集和实时时空分析
- 批准号:
10225499 - 财政年份:2017
- 资助金额:
$ 448.68万 - 项目类别:
Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
- 批准号:
7285550 - 财政年份:2006
- 资助金额:
$ 448.68万 - 项目类别:
Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
- 批准号:
7139534 - 财政年份:2006
- 资助金额:
$ 448.68万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
Mechanisms underlying mustard gas-induced conjunctival injury and use of lipid mediators as medical countermeasures
芥子气引起的结膜损伤的机制以及脂质介质作为医疗对策的使用
- 批准号:
10882060 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
Feasibility of Using PET Imaging for Detection of Treatment-Induced Changes in Chronic Neuroinflammation Following TBI
使用 PET 成像检测 TBI 后治疗引起的慢性神经炎症变化的可行性
- 批准号:
10703823 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
- 批准号:
10723570 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别: