Genomics Research Experience for Master's Students (GEMS) Fellowship
硕士生基因组学研究经验(GEMS)奖学金
基本信息
- 批准号:10628537
- 负责人:
- 金额:$ 11.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAddressBiomedical ResearchBiometryBrain DrainsCellsClinicalClonal EvolutionComplexComputing MethodologiesDNADataData AnalysesData ScienceData ScientistDecision MakingDegree programDevelopmentDisciplineEducationEducational workshopEnrollmentEnvironmentEpidemiologyEvaluationExposure toFacultyFeedbackFellowshipFellowship ProgramGenomic approachGenomicsGoalsIndividualIndustryInternshipsInterviewLearningLettersMalignant NeoplasmsMaster of ScienceMedicineMemorial Sloan-Kettering Cancer CenterMentorsMentorshipMethodologyMethodsModelingModernizationParticipantPatientsPerformancePopulationProcessProgram EvaluationProteinsRNARecommendationRecordsReproducibilityResearchResearch Project GrantsResearch TrainingScienceScientistSeriesStatistical MethodsStructureStudentsSurveysTechniquesTechnologyTimeTrainingTranslatingTranslational ResearchTumor Biologybiomarker discoverycancer genomicscareercareer developmentcomputer infrastructurecomputer sciencedata resourcedisease classificationexperiencefollow-upfrontiergenomic datagenomic toolshands on researchhigh dimensionalityknowledge translationlecturesmultidimensional datamultidisciplinarymultimodalityneoplasm resourcenext generationnext generation sequencingparallel computerpeerprecision oncologyprogramsprospectiverecruitrisk stratificationskillsstatisticsstudent trainingsuccesssummer internshipsummer researchtheoriestooltranscriptomewhole genome
项目摘要
ABSTRACT
The last decade has seen an exponential increase in multimodal cancer -omics data due to the development of
high throughput cutting-edge technologies that capture DNA, RNA, protein and metabolite level data. There is a
critical need for training the next generation of data scientists in genomics who can be tasked to translate the
complex integration of these high dimensional data to deliver precision oncology using sophisticated statistical
and computational methods and tools. Due to growing enticements from industry, there is significant threat of
“brain drain” from academia that is especially prevalent among those with data science and high dimensional
computational skills. This proposal seeks to develop the Memorial Sloan Kettering Cancer Center’s Genomics
Research Experience for Master’s Students (GEMS) Fellowship Program, a structured and specialized program
that targets master’s level trainees in biostatistics, statistics, data science, computer science or related
quantitative discipline (6 per summer over 5 years). The GEMS program is a hands-on, 12-week immersive and
interdisciplinary summer research experience in cancer genomics with several components that make the
program unique: access to the world's leading resources of cancer genomics data and tools, a quantitative and
scientific dual-mentoring model, pairing with a peer advisor, and a lecture/mini workshop series on cutting-edge
genomic technologies and high dimensional data analysis given by program faculty who are world experts. The
fellows will gain experience working with whole-genome and whole-transcriptome next-generation sequencing
data and obtain a real understanding of high-dimensional data analysis, advanced statistical genomics concepts
and modeling techniques, parallel computing and reproducible research paradigms. This combination of large
data resources, computational infrastructure, didactic lecture and hands-on workshop series from program
faculty creates a unique environment in which the following aims will be pursued: 1) develop a genomics
research internship program that annually recruits 6 students to provide them a 12-week immersive hands-on
research training experience addressing cutting edge cancer genomics research questions; 2) develop and
facilitate a bi-directional evaluation plan to provide timely assessment and feedback for the participants and their
mentors; and 3) track participants' career development over time to evaluate the success of the program and to
support program alumni to pursue quantitative careers in genomics. GEMS will be co-led by 2 PDs at Memorial
Sloan Kettering Cancer Center with long track records of impactful research, mentorship, and successful
knowledge translation. The dual team mentoring approach will prepare students for the inter-disciplinary
translational science workforce and will learn to become critical thinkers. GEMS will prepare trainees for impactful
careers as -omics data scientists and will obtain work-force training in genomics cancer medicine.
抽象的
过去十年,由于多模式癌症组学数据的发展,多模式癌症组学数据呈指数增长。
捕获 DNA、RNA、蛋白质和代谢物水平数据的高通量尖端技术。
迫切需要培训下一代基因组学数据科学家,他们的任务是翻译基因组学
这些高维数据的复杂整合,利用复杂的统计数据提供精准的肿瘤学
由于工业的诱惑不断增加,存在着巨大的威胁。
学术界的“人才流失”在数据科学和高维领域尤其普遍
该提案旨在发展纪念斯隆凯特琳癌症中心的基因组学。
硕士生研究经验 (GEMS) 奖学金计划,一个结构化的专业计划
针对生物统计学、统计学、数据科学、计算机科学或相关领域的硕士学位学员
GEMS 项目是一项为期 12 周的沉浸式定量实践课程。
癌症基因组学的跨学科夏季研究经验,其中几个组成部分使
计划独特:获得世界领先的癌症基因组学数据和工具资源,定量和
科学的双指导模式,与同行顾问配对,以及前沿的讲座/迷你研讨会系列
由世界专家项目教师提供的基因组技术和高维数据分析。
研究员将获得全基因组和全转录组下一代测序的经验
数据并真正了解高维数据分析、先进的统计基因组学概念
以及建模技术、并行计算和可重复研究范式的这种结合。
项目中的数据资源、计算基础设施、教学讲座和实践研讨会系列
教师创造了一个独特的环境,在其中追求以下目标:1)发展基因组学
研究实习计划每年招收 6 名学生,为他们提供为期 12 周的沉浸式实践
解决前沿癌症基因组学研究问题的研究培训经验;2) 开发和
促进双向评估计划,为参与者及其他们的人员提供及时的评估和反馈
导师;3) 跟踪参与者的职业发展,以评估计划的成功并
支持计划校友追求基因组学定量职业将由纪念馆的 2 名 PD 共同领导。
斯隆凯特琳癌症中心拥有长期有影响力的研究、指导和成功的记录
双团队指导方法将使学生为跨学科做好准备。
GEMS 将为学员培养具有影响力的人才。
担任组学数据科学家,并将获得基因组学癌症医学方面的劳动力培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHERINE S PANAGEAS其他文献
KATHERINE S PANAGEAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHERINE S PANAGEAS', 18)}}的其他基金
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
- 批准号:
10683604 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
2023 Physics and Chemistry of Microfluidics Gordon Research Conference and Gordon Research Seminar
2023年微流控物理与化学戈登研究会议暨戈登研究研讨会
- 批准号:
10681683 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
Microphysiological Systems to Study Hypoxic Cardiac Injury
研究缺氧性心脏损伤的微生理系统
- 批准号:
10591258 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
Early Career-CeNtered EnricHment to AdvaNce Research Careers in Maternal HEalth -ENHANCE-M
以早期职业为中心的丰富活动,以推进孕产妇健康领域的研究职业 -ENHANCE-M
- 批准号:
10756021 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别: