An Individualized, Multidimensional Dimensional Approach to Psychopathology
个性化、多维度的精神病理学方法
基本信息
- 批准号:10626821
- 负责人:
- 金额:$ 84.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAnatomyAnxiety DisordersAtlasesAttentionBehaviorBehavioralBipolar DisorderBrainCardiologyCategoriesClassificationClinicalCognitiveCollectionDSM-VDataData SetDevelopmentDiagnosisDiagnosticDimensionsFunctional Magnetic Resonance ImagingFutureHeartHumanImageIndividualIndividual DifferencesIntelligenceInterventionLinkLiquid substanceMajor Depressive DisorderMeasuresMedicineMental HealthMental disordersMethodsModelingModernizationMonitorObsessive-Compulsive DisorderOutcomePatientsPerformancePhenotypePost-Traumatic Stress DisordersPsychiatryPsychopathologyPsychosesResearch Domain CriteriaRestSamplingShort-Term MemoryStressSymptomsTask PerformancesTestingTranslatingTranslational ResearchTreatment EffectivenessWorkbaseclinically relevantconnectomeconnectome based predictive modelingdesigndimensional analysisimprovedinnovationinsightinterestmethod developmentmodel buildingneuralneural circuitneuroimagingnovelnovel strategiesopen sourcepersonalized approachpredictive modelingprodromal psychosisrecruittooltraittreatment strategy
项目摘要
A primary challenge facing functional neuroimaging is the translation of research findings to the clinical setting.
In part, fMRI has struggled as a clinical tool due to the lack of functional phenotypes that characterize patients.
To address this, we have developed connectome-based predictive modeling (CPM) to identify and validate
predictive models of behavior/symptoms based on functional connectivity data. The promise of this approach is
that by developing predictive models based on the functional organization of an individual’s brain, we may be
able to extract a rich connectivity phenotypes to aid in the clinical characterization of patients. This approach
has the potential to improve our ability to categorize patients in otherwise heterogeneous groups and monitor
the effectiveness of treatment interventions. To do this, modeling methods are needed that are designed to
generalize across multiple behaviors, symptoms and diagnostic groups. In this proposal, we will push forward
several major developments in CPM focused on generating transdiagnostic models for three specific behaviors
(attention, working memory, and fluid intelligence) and factors from clinical tests, that will lead to functional
phenotypes. We will collect a battery of continuous performance tasks in a spectrum of (N=300) individuals.
We propose three specific aims: (1) To characterize node-boundary x dimensional construct effects; (2) To
preform unidimensional and multi-dimensional CPM to predict RDoC constructs; (3) To evaluate the extent to
which subjects with similar functional phenotypes cluster into symptom based or DSM-5 categorical clusters.
This aim will also allow us to investigate the functional networks that vary with symptom and to investigate
categorical subtleties in these symptom based phenotypes. The significance of transdiagnostic predictive
models of behavior from functional connectivity data lay in their ability to delineate clinically relevant
information from any individual (i.e. patient or control). The current lack of transdiagnostic predictive models
limits the clinical utility of fMRI, providing a framework for, and generating, these models could have important
implications in translating fMRI into a viable clinical tool. The innovation of this proposal is fourfold: 1) the
collection of a novel trans-diagnostic data set to be made publicly available; 2) the development of an
approach to generate personalized functional atlases to account for individual differences in anatomy; 3) the
development of methods to delineate meaningful functional phenotypes to assess symptoms, and 4) to provide
a means for comparing alignment of subjects on symptom dimensions versus DSM-5 categories using these
functional phenotypes. These developments will be validated using a combination of novel data to be collected
here as well as 3 publicly available data sets. The final deliverables will yield tools for measuring functional
phenotypes reflecting symptom scores suitable for an individualized approach to medicine.
功能神经影像学面临的主要挑战是将研究成果转化为临床环境。
在某种程度上,由于缺乏表征患者的功能表型,功能磁共振成像作为一种临床工具一直举步维艰。
为了解决这个问题,我们开发了基于连接组的预测模型(CPM)来识别和验证
基于功能连接数据的行为/症状预测模型。
通过开发基于个人大脑功能组织的预测模型,我们可能
这种方法能够提取丰富的连接表型来帮助患者的临床特征。
有潜力提高我们对患者进行异质性分组和监测的能力
为此,需要专门设计的建模方法。
在这项提案中,我们将推动对多种行为、症状和诊断群体的概括。
CPM 的几个主要发展集中于为三种特定行为生成跨诊断模型
(注意力、工作记忆和流体智力)以及临床测试中的因素,这些因素将导致功能性
我们将在一系列 (N=300) 个体中收集一系列连续执行任务。
我们提出了三个具体目标:(1)表征节点边界 x 维构造效应;(2)
执行一维和多维 CPM 来预测 RDoC 结构 (3) 评估程度;
具有相似功能表型的受试者聚类为基于症状的聚类或 DSM-5 分类聚类。
这一目标还将使我们能够研究随症状变化的功能网络并研究
这些基于症状的表型的分类微妙之处是跨诊断预测的意义。
来自功能连接数据的行为模型在于它们描述临床相关性的能力
来自任何个人(即患者或对照)的信息 目前缺乏跨诊断预测模型。
限制了功能磁共振成像的临床实用性,为这些模型提供了框架并生成这些模型可能具有重要意义
该提案的创新点有四个:1)
收集公开的新型跨诊断数据集;2) 开发
生成个性化功能图谱以考虑解剖学个体差异的方法;3)
开发方法来描绘有意义的功能表型以评估症状,以及 4) 提供
一种使用这些方法比较受试者在症状维度与 DSM-5 类别上的一致性的方法
这些进展将通过收集的新数据的组合进行验证。
这里以及 3 个公开可用的数据集将产生用于测量功能的工具。
反映症状评分的表型适合个体化的医学方法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Big data approaches to identifying sex differences in long-term memory.
大数据方法可以识别长期记忆中的性别差异。
- DOI:
- 发表时间:2021-07
- 期刊:
- 影响因子:2
- 作者:Tejavibulya, Link;Scheinost, Dustin
- 通讯作者:Scheinost, Dustin
Inside information: Systematic within-node functional connectivity changes observed across tasks or groups.
内部信息:跨任务或组观察到的系统性节点内功能连接变化。
- DOI:
- 发表时间:2022-02-15
- 期刊:
- 影响因子:5.7
- 作者:Luo, Wenjing;Constable, R Todd
- 通讯作者:Constable, R Todd
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
R Todd Constable其他文献
R Todd Constable的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('R Todd Constable', 18)}}的其他基金
An integrative Bayesian approach for linking brain to behavioral phenotype
将大脑与行为表型联系起来的综合贝叶斯方法
- 批准号:
10718215 - 财政年份:2023
- 资助金额:
$ 84.26万 - 项目类别:
An Individualized, Multidimensional Dimensional Approach to Psychopathology
个性化、多维度的精神病理学方法
- 批准号:
10463606 - 财政年份:2019
- 资助金额:
$ 84.26万 - 项目类别:
An Individualized, Multidimensional Dimensional Approach to Psychopathology
个性化、多维度的精神病理学方法
- 批准号:
10191052 - 财政年份:2019
- 资助金额:
$ 84.26万 - 项目类别:
Understanding evoked and resting-state fMRI through multi scale imaging
通过多尺度成像了解诱发和静息态 fMRI
- 批准号:
9763653 - 财政年份:2016
- 资助金额:
$ 84.26万 - 项目类别:
Understanding evoked and resting-state fMRI through multi scale imaging
通过多尺度成像了解诱发和静息态 fMRI
- 批准号:
9205912 - 财政年份:2016
- 资助金额:
$ 84.26万 - 项目类别:
Multiscale Imaging of Spontaneous Activity in Cortex: Mechanisms, Development and Function
皮层自发活动的多尺度成像:机制、发育和功能
- 批准号:
9312908 - 财政年份:2015
- 资助金额:
$ 84.26万 - 项目类别:
Multiscale Imaging of Spontaneous Activity in Cortex: Mechanisms, Development and Function
皮层自发活动的多尺度成像:机制、发育和功能
- 批准号:
9266944 - 财政年份:2015
- 资助金额:
$ 84.26万 - 项目类别:
Acquisition of a Siemens Console and Gradients for a 7T MRI/MRS System
为 7T MRI/MRS 系统购买西门子控制台和梯度
- 批准号:
8734828 - 财政年份:2014
- 资助金额:
$ 84.26万 - 项目类别:
O-Space Imaging - Accelerating MRI with Z2 Gradient Encoding
O-Space Imaging - 使用 Z2 梯度编码加速 MRI
- 批准号:
8639688 - 财政年份:2013
- 资助金额:
$ 84.26万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 84.26万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 84.26万 - 项目类别:
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 84.26万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 84.26万 - 项目类别: