Statistical Qualification of the Impact of Missing Data in EMA Studies
EMA 研究中缺失数据影响的统计资格
基本信息
- 批准号:9020218
- 负责人:
- 金额:$ 28.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdolescentAffectAlgorithmsAreaAttentionBehaviorBooksComplexComputer softwareDataData AnalysesData CollectionDependenceDevelopmentEcological momentary assessmentEmotionalEvaluationGrantGuidelinesHealthHealth behaviorJointsMalignant NeoplasmsMeasurementMeasuresMethodsModelingMoodsNational Cancer InstituteNatureNicotine DependenceOutcomeParentsParticipantPatternPersonsProgram Research Project GrantsPublic HealthResearchResearch PersonnelRoleScienceScientistSmokingStatistical MethodsSystematic BiasTechniquesTestingTimeValidity and ReliabilityVariantadolescent smokinganticancer researchbehavioral responsebehavioral/social sciencecohortflexibilityhigh riskhuman subjectimprovedindexinginnovationinsightmHealthmeetingsmood regulationnovel strategiesprogramspublic health researchresponsesimulationsocialsocial science researchsoftware developmenttoolusabilityuser-friendly
项目摘要
DESCRIPTION (provided by applicant): In response to the strong demand for developing appropriate analytic techniques for use with new kinds of data and new approaches to behavioral and social science research, we propose to develop principled and parsimonious statistical measures that are applicable in studies using intensive measurement methods, such as Ecological Momentary Assessment (EMA) methods, to quantify the reliability and validity of empirical findings to nonignorable missingness. Like any study involving human subjects, missing data are common in EMA studies. For example, when studying the question "Are moods just prior smoking different than moods during random background times", there can be a moderate amount of missing data because of study participants' nonresponses to those random prompts. It is often suspected that the missing data caused by such prompt nonresponses are nonrandom in that the prompt nonresponse behaviors are related to contemporaneous mood outcomes and consequently the observed data may be a selected nonrandom subset of a person's background mood even though the planned prompts are random. Such nonignorable missingness needs to be properly accounted for in the analysis of EMA data. However, unlike in more traditional studies, nonignorable missingness in intensive EMA data poses significant new analytic challenges and calls for more general, flexible and robust methods that are applicable in EMA studies to quantify and improve the reliability, validity
and usability of the collected data. Thus, the aims of the proposed study are to (1) develop general, robust and tractable statistical measures and accessible software for assessing the impact of missing data on analysis of EMA data, and (2) examine the role of smoking on mood regulation in adolescents while accounting for the impact of nonrandom missingness, using data from our program project grant, "Social and Emotional Contexts of Adolescent Smoking Patterns" (NCI grant #PO1 2CA98262), which established a cohort of adolescents at high risk for the development of smoking and nicotine dependence. This study has the potential to make methodological and substantive contributions to EMA data analysis and understanding the relationship between mood variation and smoking dependence. The principled and simple statistical measures and accessible software to be developed will allow researchers to conveniently quantify the robustness of empirical findings from studies using EMA or other types of measurement-intensive methods to nonignorable missingness for a wide range of data types and models, missing data patterns and mechanisms. These methods can also easily generalize to a variety of cancer-relevant research areas, including studies using other types of new intensive measurements, such as mHealth (mobile heath) studies.
DESCRIPTION (provided by applicant): In response to the strong demand for developing appropriate analytic techniques for use with new kinds of data and new approaches to behavioral and social science research, we propose to develop principled and parsimonious statistical measures that are applicable in studies using intensive measurement methods, such as Ecological Momentary Assessment (EMA) methods, to quantify the reliability and validity of empirical findings to nonignorable missingness.像任何涉及人类受试者的研究一样,缺少数据在EMA研究中也很常见。例如,当研究这个问题“情绪是在随机背景时间与情绪不同的情绪不同的情绪”时,由于研究参与者对这些随机提示的不反应,可能会有适度的数据丢失。人们通常会怀疑,这种迅速反应引起的丢失数据是非随机的,因为迅速的无响应行为与同时的情绪结果有关,因此,即使计划的提示是随机的,观察到的数据也可能是一个人背景情绪的选定非随机子集。在EMA数据的分析中,需要正确考虑这种不可忽视的丧失性。但是,与更传统的研究不同,密集的EMA数据中的不可忽视的缺失构成了重大的新分析挑战,并要求采用更通用,灵活和健壮的方法,这些方法适用于EMA研究,以量化和提高可靠性,有效性
和收集数据的可用性。 Thus, the aims of the proposed study are to (1) develop general, robust and tractable statistical measures and accessible software for assessing the impact of missing data on analysis of EMA data, and (2) examine the role of smoking on mood regulation in adolescents while accounting for the impact of nonrandom missingness, using data from our program project grant, "Social and Emotional Contexts of Adolescent Smoking Patterns" (NCI grant #PO1 2CA98262),建立了一系列青少年,有吸烟和尼古丁依赖性的高风险。这项研究有可能为EMA数据分析做出方法论和实质性贡献,并了解情绪变化和吸烟依赖性之间的关系。原则上简单的统计措施和可访问的软件将使研究人员可以通过EMA或其他类型的测量密集型方法来方便地量化经验发现的鲁棒性,从而使多种数据类型和模型,缺失的数据模式和机制不可降低缺失。这些方法还可以轻松地推广到各种与癌症相关的研究领域,包括使用其他类型的新密集测量的研究,例如MHealth(Mobile Heath)研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Xie其他文献
Hui Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Xie', 18)}}的其他基金
Senior Centers and Older Adults' Health Outcomes
老年人中心和老年人的健康结果
- 批准号:
10666632 - 财政年份:2022
- 资助金额:
$ 28.66万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Effects of tobacco cut and nicotine form on the abuse liability of moist snuff
烟丝和尼古丁形式对湿鼻烟滥用倾向的影响
- 批准号:
10587196 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别:
Engagement and Depression in Adolescents and Young Adults with Childhood-onset Lupus
患有儿童期狼疮的青少年和年轻人的参与和抑郁
- 批准号:
10591744 - 财政年份:2023
- 资助金额:
$ 28.66万 - 项目类别: