Mechanisms of host leukocyte-mediated Toxoplasma dissemination in its host
宿主白细胞介导的弓形虫在宿主体内传播的机制
基本信息
- 批准号:10623334
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-17 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:2-tyrosineAcquired Immunodeficiency SyndromeActinsAdaptor Signaling ProteinAdhesivesAffectAnimal ModelAnimalsAttenuated VaccinesBar CodesBehaviorBindingBiochemicalBiochemistryBiological AssayBioluminescenceBlindnessBrainCRISPR/Cas technologyCell-Matrix JunctionCellsCellular biologyCessation of lifeCo-ImmunoprecipitationsComplexCytoskeletonCytosolDataDefectDendritic CellsDevelopmentDiseaseDisseminated Malignant NeoplasmDistantEquus caballusExhibitsFetusFoundationsGenesHIVHuman bodyImageImmuneImmune systemImmunocompromised HostIn VitroIndividualInfantInfectionInterventionKnowledgeLeukocytesLifeLuciferasesMeasuresMediatingMesenchymalMolecularMothersMusNCK adaptor protein 1NR0B2 geneNamesOrganPTPN11 genePTPN6 geneParasitesPathologyPathway interactionsPatientsPeptidesPersonsPhosphoric Monoester HydrolasesPolymersPopulationProcessProline-Rich DomainProtein KinaseProtein Tyrosine PhosphataseProteinsRecombinantsRegulationResearchRouteShuttle VectorsSiteStructureTestingTherapeutic InterventionTimeTissuesToxoplasmaToxoplasma gondiiToxoplasmosisTransplant RecipientsTyrosine PhosphorylationVaccinesWorkacute infectioncancer cellcell motilityfoodborneimmunosuppressedin vivoinnovationinsightloss of functionmigrationmutantnovelnovel therapeuticsparasite invasionpathogenpolymerizationpreventprotein protein interactionprotein purificationreceptorresponserhotransmission process
项目摘要
The intracellular parasite Toxoplasma gondii causes life-threatening disease in immunosuppressed or
transplant patients. Its pathology mainly relies on the dissemination of the parasite from the site of infection to
various essential organs, such as the brain, where it causes tissue destruction. T. gondii often uses a Trojan
Horse mechanism to facilitate its dissemination, during which it hijacks the host cell migration machinery to co-
opt host leukocytes as shuttling vectors. Exactly how T. gondii does so, however, is largely unknown. We
recently identified a novel T. gondii protein important for its dissemination, which we named TgWIP. We found
that upon invasion the parasite secreted TgWIP into the host cell cytosol, where TgWIP stimulated dendritic
cells to become hyper-migratory and undergo a mesenchymal to amoeboid transition (MAT). The process was
associated with a dramatic rearrangement of the actin cytoskeleton. The overall objective of this application is
to determine the molecular mechanisms by which TgWIP mediates T. gondii dissemination in the host. Our
central hypothesis is that TgWIP promotes dissemination by modulating leukocyte actin dynamics. This
hypothesis was formulated based on our preliminary data showing that TgWIP directly interacts with several
central regulators of the actin cytoskeleton involved in cell migration, including the WAVE regulatory complex
(WRC), the SH2-SH3 adaptor proteins Nck and Grb2, and the SHP1/2 tyrosine phosphatases. We will test our
hypothesis by pursuing two aims: 1) determine how TgWIP interacts with various actin regulators to modulate
host actin dynamics in vitro, and 2) determine how TgWIP enhances host leukocyte motility to facilitate
dissemination in vivo. Specifically, our team will combine biochemistry, cell biology, and animal models to
determine (i) how TgWIP directly interacts with the WRC, Nck, Grb2, and SHP1/2, and how the interactions
influence actin polymerization in vitro; (ii) how these interactions alter the migrative behaviors of primary
dendritic cells; and (iii) how disruption of these interactions influences in vivo dissemination of T. gondii in mice.
Our proposed research is innovative because it will unravel a novel mechanism by which TgWIP, as a newly
identified parasite effector unique to T. gondii, coordinates several distinct host actin regulators to reroute
leucocyte migration and facilitate T. gondii dissemination. Our work is significant because understanding the
molecular and biochemical mechanisms underlying T. gondii dissemination will lay the foundation for the
development of novel interventions that can directly target these mechanisms and block T. gondii
dissemination after acute infection or reactivation in AIDS or transplant patients or from the mother to the fetus.
This knowledge will be also important for the development of a safe, non-transmissible live vaccine that can
prevent T. gondii transmission from animals. Furthermore, by understanding how TgWIP promotes MAT in
infected DCs, our work will provide valuable insights into how other cells, such as metastatic cancer cells and
leukocytes, may use a similar mechanism to undergo MAT in response to diverse environmental conditions.
细胞内寄生虫弓形虫会在免疫抑制或免疫抑制的人群中引起危及生命的疾病
移植患者。其病理学主要依赖于寄生虫从感染部位传播到
各种重要器官,例如大脑,它会导致组织破坏。弓形虫经常使用木马
马机制促进其传播,在此期间它劫持宿主细胞迁移机制来共同
选择宿主白细胞作为穿梭载体。然而,弓形虫到底是如何做到这一点的,目前还不清楚。我们
最近发现了一种对其传播很重要的新型弓形虫蛋白,我们将其命名为 TgWIP。我们发现
入侵后,寄生虫将 TgWIP 分泌到宿主细胞胞浆中,其中 TgWIP 刺激树突
细胞变得过度迁移并经历间充质向变形虫转变(MAT)。过程是
与肌动蛋白细胞骨架的剧烈重排有关。该应用程序的总体目标是
确定 TgWIP 介导弓形虫在宿主中传播的分子机制。我们的
中心假设是 TgWIP 通过调节白细胞肌动蛋白动力学来促进传播。这
我们的初步数据表明 TgWIP 直接与多种物质相互作用,从而制定了假设
参与细胞迁移的肌动蛋白细胞骨架的中央调节因子,包括 WAVE 调节复合体
(WRC)、SH2-SH3 接头蛋白 Nck 和 Grb2 以及 SHP1/2 酪氨酸磷酸酶。我们将测试我们的
通过追求两个目标来提出假设:1)确定 TgWIP 如何与各种肌动蛋白调节剂相互作用以进行调节
体外宿主肌动蛋白动力学,2) 确定 TgWIP 如何增强宿主白细胞运动以促进
体内传播。具体来说,我们的团队将结合生物化学、细胞生物学和动物模型来
确定 (i) TgWIP 如何直接与 WRC、Nck、Grb2 和 SHP1/2 交互,以及如何交互
影响体外肌动蛋白聚合; (ii) 这些相互作用如何改变初级物种的迁徙行为
树突状细胞; (iii)这些相互作用的破坏如何影响弓形虫在小鼠体内的传播。
我们提出的研究是创新的,因为它将揭示一种新的机制,通过该机制,TgWIP 作为一种新的
确定了弓形虫特有的寄生虫效应子,协调几个不同的宿主肌动蛋白调节因子以重新路由
白细胞迁移并促进弓形虫传播。我们的工作意义重大,因为了解
弓形虫传播的分子和生化机制将为弓形虫传播奠定基础
开发可以直接针对这些机制并阻断弓形虫的新型干预措施
艾滋病或移植患者急性感染或重新激活后传播或从母亲传播到胎儿。
这些知识对于开发一种安全的、非传染性的活疫苗也很重要。
防止弓形虫从动物身上传播。此外,通过了解 TgWIP 如何促进 MAT
感染的树突状细胞,我们的工作将为了解其他细胞(例如转移性癌细胞)如何
白细胞可能会使用类似的机制来经历 MAT 以响应不同的环境条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baoyu Chen其他文献
Baoyu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baoyu Chen', 18)}}的其他基金
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
9982353 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10470730 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10217192 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10623679 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
9751336 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Signal Integration from Membranes to the Actin Cytoskeleton
从膜到肌动蛋白细胞骨架的信号整合
- 批准号:
10470730 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
相似国自然基金
从CD4+、CD8+T细胞免疫活化分子及其上游调控因子表达探究健脾祛湿法治疗艾滋病免疫调节机制
- 批准号:81460716
- 批准年份:2014
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
HAART过程中HCV复制增强与肝细胞MAVS抗病毒通路的关系研究
- 批准号:81201286
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Develop and Assess mRNA Lipid Nanoparticle Vaccines Against Cryptococcosis
开发并评估针对隐球菌病的 mRNA 脂质纳米颗粒疫苗
- 批准号:
10616313 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Mechanisms of KSHV-induced endothelial cell loss of contact inhibition of proliferation
KSHV诱导内皮细胞失去接触抑制增殖的机制
- 批准号:
10762813 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Dissecting Hem-1 functions in B lymphocyte Development and Primary Immunodeficiency Disease
剖析 Hem-1 在 B 淋巴细胞发育和原发性免疫缺陷病中的功能
- 批准号:
10385848 - 财政年份:2021
- 资助金额:
$ 46万 - 项目类别:
Analysis of human retrovirus particle assembly sites
人逆转录病毒颗粒组装位点分析
- 批准号:
10662501 - 财政年份:2021
- 资助金额:
$ 46万 - 项目类别: