Macrophages and attenuation of inflammation resolution in APOL1 nephropathy
APOL1 肾病中巨噬细胞和炎症消退的减弱
基本信息
- 批准号:10624214
- 负责人:
- 金额:$ 62.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-20 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAfrican TrypanosomiasisAfrican ancestryAllelesAmericanAnti-Inflammatory AgentsApolipoproteinsApoptoticAttenuatedAutomobile DrivingBiological FactorsBiological ModelsBiologyBlack raceCellsCholesterol HomeostasisChronicChronic Kidney FailureCoculture TechniquesCodeComplexCytokine SignalingDNADevelopmentDiseaseDisease ProgressionEnd stage renal failureEndoplasmic ReticulumFunctional disorderGenesGenetic TranscriptionGenetic studyGenotypeGoalsHealth Care CostsHomeostasisHumanHuman GeneticsImmuneImmune responseImpairmentIn VitroIndividualInflammationInflammatoryInjuryInjury to KidneyInnate Immune ResponseInterferon Type IIInterleukin-10Interleukin-4InvestigationKidneyKidney DiseasesLinkMacrophageMeasuresMediatingMitochondriaModelingMolecular ChaperonesNatural ImmunityPathogenesisPathway interactionsPatientsPhagocytesPhenotypePlayPrimatesProcessProteinsQuality of lifeReactive Oxygen SpeciesResolutionRespirationRiskRisk FactorsRoleSignal TransductionSignaling ProteinSterilityStimulusStressTestingTherapeuticTissuesTransgenic MiceUnited StatesValidationVariantWorkattenuationbiological adaptation to stresscell typecomorbiditydisease phenotypeendoplasmic reticulum stressexperiencegenome editinggenomic locushealth differencehigh riskimmune functionin vivoinduced pluripotent stem cellinhibitorinsightkidney cellkidney fibrosiskidney repairlipid metabolismmetabolic abnormality assessmentmitochondrial dysfunctionmitochondrial metabolismmortalitynovelpathogenpodocyteprotein activationprotein functionresponseresponse to injuryrisk variantsocioeconomicstissue repairtranscriptomics
项目摘要
PROJECT SUMMARY
Individuals who self-identify as Black in the United States experience disproportionately higher rates of
developing chronic kidney disease (CKD) and experiencing CKD progression to end-stage kidney disease
(ESKD). A portion of this health difference is not explained by socioeconomic and traditional risk factors,
necessitating the study of other biological factors contributing to disease pathogenesis. Human genetics studies
have identified and validated two common coding variants in the primate-specific Apolipoprotein L1 (APOL1)
gene that contribute to high rates of proteinuric CKD in patients with African ancestry. These alleles, termed G1
and G2, evolved and became common due to the survival advantage they confer against African
trypanosomiasis. Despite their role in primate innate immunity, not much is known about the role immune cells
such as macrophages, which contribute to kidney injury and repair, play in APOL1 nephropathy.
To address this gap, we propose to use genome-edited induced pluripotent stem cell (iPSC) derived
macrophages and transgenic mice to investigate how G1 and G2 APOL1 alter macrophage function to promote
kidney disease. We focus on the macrophage due to its dual role in innate immune responses to pathogens and
contribution to kidney injury and fibrosis. In preliminary studies, we have generated genome-edited G1 iPSCs
sharing an isogenic background with G0 controls and found that G1 iPSC derived macrophages maintain higher
expression of proinflammatory genes under multiple conditions. Because chronic sterile macrophage
inflammation can drive kidney disease, we are investigating mechanisms by which G1 and G2 APOL1 promote
a sustained proinflammatory macrophage phenotype and maladaptive tissue repair. In various complex diseases
including CKD, resolution of tissue inflammation requires anti-inflammatory reprogramming of immune cells and
clearance of apoptotic cells by macrophages via efferocytosis. Additionally, macrophage inflammation can be
induced by stress or dysfunction of the endoplasmic reticulum (ER), which has been implicated in APOL1 biology
in other cell types. Therefore, we hypothesize that G1 and G2 macrophages undergo impaired anti-inflammatory
reprogramming and inefficient efferocytosis through enhanced ER stress, thereby contributing to non-resolving
kidney inflammation and APOL1 nephropathy. To test this central hypothesis, we will delineate which ER stress
pathways G1 and G2 APOL1 perturb (Aim 1), investigate anti-inflammatory signaling and mitochondrial
dysfunction in the attenuation of reparative reprogramming of G1 and G2 macrophages (Aim 2), and determine
the mechanisms by which G1 and G2 APOL1 impair efferocytosis (Aim 3). The proposed investigations will test
a novel hypothesis that APOL1 risk alleles amplify kidney injury through macrophage dysfunction. Elucidating
the macrophage’s role in APOL1 nephropathy will offer critical insight for developing complementary strategies
to treat APOL1 disease through enhancing macrophage-mediated tissue repair.
项目概要
在美国,自认为是黑人的个人经历的比例要高得不成比例。
患有慢性肾病 (CKD) 并经历 CKD 进展为终末期肾病
(ESKD)这种健康差异的一部分不能用社会经济和传统风险因素来解释,
需要研究导致疾病发病机制的其他生物因素。
已鉴定并验证了灵长类动物特异性载脂蛋白 L1 (APOL1) 中的两个常见编码变体
导致非洲血统患者蛋白尿 CKD 发生率较高的基因,这些等位基因被称为 G1。
和 G2,由于相对于非洲人具有生存优势而进化并变得普遍
尽管免疫细胞在灵长类动物先天免疫中发挥作用,但人们对免疫细胞的作用知之甚少。
例如巨噬细胞,它有助于肾脏损伤和修复,在 APOL1 肾病中发挥作用。
为了解决这一差距,我们建议使用基因组编辑的诱导多能干细胞(iPSC)衍生的
巨噬细胞和转基因小鼠研究 G1 和 G2 APOL1 如何改变巨噬细胞功能以促进
我们关注巨噬细胞,因为它在对病原体的先天免疫反应中发挥双重作用。
在初步研究中,我们已经生成了基因组编辑的 G1 iPSC。
与 G0 对照共享同基因背景,发现 G1 iPSC 衍生的巨噬细胞保持较高水平
由于慢性无菌巨噬细胞在多种条件下表达促炎基因。
炎症会导致肾脏疾病,我们正在研究 G1 和 G2 APOL1 促进的机制
在各种复杂疾病中持续促炎巨噬细胞表型和适应不良组织修复。
包括 CKD 在内,组织炎症的解决需要免疫细胞的抗炎重编程和
巨噬细胞通过胞吞作用清除凋亡细胞 此外,巨噬细胞炎症也可发生。
由内质网 (ER) 的应激或功能障碍引起,这与 APOL1 生物学有关
因此,我们发现 G1 和 G2 巨噬细胞的抗炎作用受损。
通过增强内质网应激而导致重编程和低效的胞吞作用,从而导致非解决性问题
肾脏炎症和 APOL1 肾病 为了检验这一中心假设,我们将描述哪些 ER 应激。
通路 G1 和 G2 APOL1 扰乱(目标 1),研究抗炎信号传导和线粒体
G1 和 G2 巨噬细胞修复性重编程减弱功能障碍(目标 2),并确定
G1 和 G2 APOL1 损害胞吞作用的机制(目标 3)。
一种新的假设,即 APOL1 风险等位基因通过巨噬细胞功能障碍放大肾损伤。
巨噬细胞在 APOL1 肾病中的作用将为制定补充策略提供重要见解
通过增强巨噬细胞介导的组织修复来治疗 APOL1 疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennie J LIn其他文献
Jennie J LIn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennie J LIn', 18)}}的其他基金
Macrophages and attenuation of inflammation resolution in APOL1 nephropathy
APOL1 肾病中巨噬细胞和炎症消退的减弱
- 批准号:
10345803 - 财政年份:2022
- 资助金额:
$ 62.76万 - 项目类别:
Modulation of Macrophage Function through Alternative Splicing in Cardiometabolic Diseases
通过选择性剪接调节心脏代谢疾病中的巨噬细胞功能
- 批准号:
9547928 - 财政年份:2017
- 资助金额:
$ 62.76万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 62.76万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 62.76万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 62.76万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 62.76万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 62.76万 - 项目类别: