Customized nanofibers with preferential lung-targeting properties for treating metastatic pulmonary tumors
具有优先肺部靶向特性的定制纳米纤维可用于治疗转移性肺肿瘤
基本信息
- 批准号:10623913
- 负责人:
- 金额:$ 51.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-10 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdverse effectsAnimal ModelAnimalsArchitectureBiodistributionBrainBreast Cancer PatientCessation of lifeChargeClinicalComplexCytotoxic agentDetectionDiseaseDisease ProgressionDisseminated Malignant NeoplasmDoxorubicinDoxorubicin Hydrochloride LiposomeDrug Delivery SystemsEngineeringEnsureFDA approvedFluorescence MicroscopyGenomicsGoalsHistologicHydrophobicityHypoxiaImageImmuneImmunotherapyInjectionsIonizing radiationKidneyLesionLightLiverLungLung NeoplasmsLung retentionMalignant NeoplasmsMapsMediatingMetabolismMetastatic Neoplasm to the LungModelingMolecularMonitorMusNanotechnologyNatureNeoplasm MetastasisOrganOutcomePathologicPathway interactionsPatientsPenetrationPeptide HydrolasesPeptidesPharmaceutical PreparationsPharmacotherapyPhenotypePrimary NeoplasmPropertyRadiationRadiation therapyRadiation-Sensitizing AgentsShapesSiteSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStimulusSurfaceTechniquesTechnologyTherapeuticTimeTissuesToxic effectTranslatingTreatment EfficacyTreatment FailureTreatment outcomeTreatment-related toxicityVariantVascular blood supplyacute toxicityanaloganti-canceranticancer activityantitumor effectcancer therapycancer typecell killingchemotherapyclinical prognosiscombatcombinatorialcomparativedesigndrug distributioneffective therapyflexibilityimmunogenicityimprovedin vivoinnovationliposomal formulationlung lesionmetastatic processmortalitymultiple omicsnanocarriernanofibernanomedicinenanotechnology platformneoplastic cellnovel strategiesnovel therapeutic interventionnovel therapeuticsresponsespatiotemporalsuccesssynergismtargeted treatmenttherapeutically effectivetriple-negative invasive breast carcinomatumortumor growthtumor microenvironmenttumor xenograftuptake
项目摘要
Project Summary
Currently, most nanotechnology cancer therapies focus on the treatment of primary tumors, but it is important
to leverage the potential of nanomedicine to combat cancer spread at each stage of the metastatic process.
Lung metastasis is a highly aggressive, complex, and heterogeneous disease. There is no effective treatment
for metastatic lung tumors and chemotherapy is the only option to prolong patients’ clinical prognosis. Alternative
strategies, including targeted therapy and immunotherapy have been proposed, but they failed to successfully
treat metastatic lesions.
There is an urgent need to accelerate progress toward curing lung metastases and
reduce patients’ mortality. Our goal is to develop a new therapeutic approach that carries more drugs to the
metastatic lung tumors and retains on-site to release a broad-spectrum antitumor medication. In this project, we
propose to use peptide-based nanofiber (pNFP6) with preferential lung-targeting properties to overcome the
barrier of selective drug delivery to metastases. The pNFP6 is innovative as multiple nanofibers can rearrange
into a large interfibril network to prolong the local retention and offer a long-term treatment. The nanofiber
technology will be combined with ionizing radiation therapy to enhance the drug post-delivery antitumor efficacy.
Our central hypothesis is that the combinatorial therapy will cooperatively and synergistically inhibit the disease
progression leading to an effective treatment of lung metastases. For proof-of-principle studies, we will use
pNFP6 to carry and deliver doxorobucin (Dox), a standard cytotoxic agent and radiosensitizer. The nanofibers
will favor the drug accumulation and retention on-site while radiotherapy will promote the overall anticancer effect
through direct tumor cell killing and radiation-mediated immunogenicity. The spatiotemporal-controlled drug
release will be essential to ensure the therapeutic success. To establish the potential of this antimetastatic
multiplexed approach, two specific aims will be pursued: (1) evaluate the local drug release and its impact on
the therapeutic efficacy; and (2) define the therapeutic and survival benefit of Dox-pNFP6 when combined with
radiation therapy. To achieve Aim 1, we will synthesize a panel of Dox-loaded pNFP6 analogues using different
cleavable linkers sensitive to tumor microenvironment stimuli to release the drug. We will study the in vivo drug
delivery, release, and tumoral uptake using Light Sheet Fluorescence Microscopy and MALDI-imaging. and
identify the optimal release mechanisms in response to metastatic lung tumors. To complete Aim 2, we will
assess the therapeutic efficacy (tumor inhibition and survival benefit) and toxicity profile of Dox-pNFP6 combined
with radiation therapy in several animal models bearing metastatic lung tumors. The treatment outcomes will be
compared to free Dox and Doxil, the FDA-approved liposomal formulation of Dox. We will also investigate the
molecular and immune pathways activated by this new therapeutic strategy to better understand the mechanisms
responsible for the enhanced anticancer activity. Successful completion of this project will provide an effective
therapeutic solution with clinical impacts on the treatment and management of lung metastases.
项目概要
目前,大多数纳米技术癌症疗法侧重于治疗原发性肿瘤,但重要的是
利用纳米医学的潜力来对抗转移过程每个阶段的癌症扩散。
肺转移是一种高度侵袭性、复杂性和异质性的疾病,目前尚无有效的治疗方法。
对于转移性肺肿瘤,化疗是延长患者临床预后的唯一选择。
已经提出了包括靶向治疗和免疫治疗在内的策略,但未能成功
治疗转移性病变。
迫切需要加快治愈肺转移瘤的进展
我们的目标是开发一种新的治疗方法,将更多的药物运送到患者体内。
在这个项目中,我们保留了转移性肺部肿瘤并在现场释放广谱抗肿瘤药物。
建议使用具有优先肺部靶向特性的肽基纳米纤维(pNFP6)来克服
pNFP6 具有创新性,因为多个纳米纤维可以重新排列。
进入一个大的原纤维间网络,以延长局部保留并提供长期治疗。
技术将与电离放射治疗相结合,以增强药物递送后的抗肿瘤功效。
我们的中心假设是组合疗法将协同地抑制疾病
对于原理验证研究,我们将使用它来有效治疗肺部进展转移。
pNFP6 携带和递送阿霉素 (Dox),一种标准的细胞毒性剂和放射增敏剂。
有利于药物在现场的积累和保留,放疗则促进整体抗癌效果
通过直接杀伤肿瘤细胞和辐射介导的免疫原性的时空控制药物。
释放对于确保治疗成功至关重要。要确定这种抗转移的潜力。
多重方法,将追求两个具体目标:(1)评估局部药物释放及其对
治疗效果;(2) 确定与 Dox-pNFP6 联合使用时的治疗和生存益处
为了实现目标 1,我们将使用不同的方法合成一组负载 Dox 的 pNFP6 类似物。
对肿瘤微环境刺激敏感的可裂解接头释放药物我们将研究体内药物。
使用光片荧光显微镜和 MALDI 成像进行递送、释放和肿瘤摄取。
为了完成目标 2,我们将确定针对转移性肺肿瘤的最佳释放机制。
评估 Dox-pNFP6 组合的治疗效果(肿瘤抑制和生存获益)和毒性特征
在几种患有转移性肺肿瘤的动物模型中进行放射治疗,治疗结果将是:
与游离 Dox 和 Doxil 相比,FDA 批准的 Dox 脂质体制剂的性能也将进行研究。
这种新的治疗策略激活的分子和免疫途径,以更好地了解其机制
负责加强抗癌活动,该项目的成功完成将提供有效的支持。
对肺转移的治疗和管理具有临床影响的治疗解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanessa Bellat其他文献
Vanessa Bellat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向电力储能集群系统的加速退化试验与寿命评估方法研究
- 批准号:62303293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向计算密集型应用的新型计算范式及其加速器关键技术
- 批准号:62374108
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
极端光场条件下正电子束的产生、加速和操控研究
- 批准号:12375244
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 51.16万 - 项目类别:
miRNA-Nanotechnology as a novel regenerative therapy for lymphangioleiomyomatosis
miRNA-纳米技术作为淋巴管平滑肌瘤病的新型再生疗法
- 批准号:
10761353 - 财政年份:2023
- 资助金额:
$ 51.16万 - 项目类别:
Non-contrast-enhanced peripheral MR angiography
非对比增强外周磁共振血管造影
- 批准号:
9330385 - 财政年份:2017
- 资助金额:
$ 51.16万 - 项目类别: