Molecular Mechanisms of Organelle-based Metabolic Signaling
基于细胞器的代谢信号传导的分子机制
基本信息
- 批准号:10623647
- 负责人:
- 金额:$ 58.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Cell physiologyCellsCellular MembraneCholesterolCommunicationComplexCyclic AMP-Dependent Protein KinasesCytoplasmDedicationsDiseaseEndoplasmic ReticulumFRAP1 geneFunctional disorderGoalsGrowthGrowth FactorHealthHomeostasisLipidsLysosomesMalignant NeoplasmsMeasuresMediatingMembraneMetabolicMetabolic DiseasesMolecularNeimann-Pick&aposs Disease Type CNerve DegenerationNeurodegenerative DisordersNeuronsNon-Insulin-Dependent Diabetes MellitusNutrientNutrient availabilityOrganellesOrganismOxygenPathogenicityPathway interactionsPhosphotransferasesPhysiologicalProliferatingProtein KinaseRegulationRoleSignal PathwaySignal TransductionSiteSterolsSurfaceTimedetection of nutrientdriving forcehuman diseasenovel therapeutic interventionprogramsrecruitresponsesensor
项目摘要
ABSTRACT
The molecular mechanisms through which cells sense nutrients remain largely unknown, but their
elucidation is key to our understanding of metabolic regulation both in normal and disease states. At the center
of nutrient sensing and growth regulation is an ancient protein kinase known as the mechanistic Target of
Rapamycin Complex 1 (mTORC1). In response to the combined action of metabolic inputs such as nutrients,
growth factors, energy and oxygen, mTORC1 translocates from the cytoplasm to the surface of lysosomes,
where it becomes activated. Accumulating evidence indicates that aberrant mTORC1 activation at the lysosome
could be a driving force in diseases ranging from cancer to type-2 diabetes to neurodegeneration. Thus, a deep
mechanistic understanding of how mTORC1 is activated and then inactivated in response to nutrients could point
the way to novel therapeutic strategies in these diseases. My lab has made important contributions to the
understanding of mTORC1 pathway organization, and how its function is integrated with the many activities of
the lysosome. In particular, we have identified a dedicated signaling pathway via which cholesterol, an important
building block for cellular membranes, promotes mTORC1 recruitment to the lysosome and activation of its
downstream programs. We have uncovered membrane contact sites between lysosomes and the endoplasmic
reticulum as key nodes where mTORC1 activation by cholesterol occurs, thus implicating inter-organelle
communication as an important aspect of mTORC1 regulation. Furthermore, we found that excess mTORC1
signaling, caused by cholesterol accumulation in the lysosome, drives cellular dysfunction and could be a driving
force in a neurodegenerative and metabolic disease, Niemann-Pick type C (NPC).
These discoveries directly lead to deep questions on the organization of cellular nutrient sensing, which
are at the core of the current MIRA proposal. One key challenge is to elucidate the mechanisms and physiological
roles of lipid-dependent mTORC1 regulation, specifically whether dedicated cholesterol sensors exist in the
lysosomal membrane, and how they couple the abundance of sterol molecules to mTORC1 activation and to
overall metabolic regulation at the cell and organism level. Based on our finding that cholesterol sensing by
mTORC1 involves physical communication between the lysosome and the ER, another major goal of the
proposal is to delineate the machinery that mediates communication and metabolite exchange between the
lysosome and the ER, and how this machinery participates in regulation of mTORC1 as well as another major
metabolic kinase, protein kinase A. Finally, the pathogenic role of dysregulated mTORC1 in NPC, and the ability
of mTORC1 inhibition to restore several parameters of NPC cell function, strongly support mTORC1 as a prime
target in neurodegenerative disease. We will thus determine how lysosomal mTORC1 controls neuronal cell
homeostasis, and how dysregulated mTORC1 signaling contributes to neuronal degeneration. Together, these
studies will shed light on fundamental principles of metabolic organization in health and disease states.
抽象的
细胞感知营养物质的分子机制仍然很大程度上未知,但它们的
阐明是我们理解正常和疾病状态下代谢调节的关键。在中心
营养感应和生长调节是一种古老的蛋白激酶,被称为机械靶标
雷帕霉素复合物 1 (mTORC1)。为了响应营养物质等代谢输入的综合作用,
生长因子、能量和氧气,mTORC1从细胞质易位到溶酶体表面,
它被激活的地方。越来越多的证据表明,溶酶体中 mTORC1 的异常激活
可能是癌症、2型糖尿病和神经退行性疾病等疾病的驱动力。于是,一个深
对 mTORC1 如何响应营养物质而被激活然后失活的机制的理解可能会指出
这些疾病的新治疗策略的方法。我的实验室为该领域做出了重要贡献
了解 mTORC1 通路组织,以及其功能如何与 mTORC1 通路的许多活动相结合
溶酶体。特别是,我们已经确定了一条专门的信号传导途径,胆固醇(一种重要的物质)通过该信号传导途径
细胞膜的构建模块,促进 mTORC1 募集至溶酶体并激活其
下游计划。我们发现了溶酶体和内质之间的膜接触位点
网织作为胆固醇激活 mTORC1 的关键节点,因此涉及细胞器间
通讯是 mTORC1 调节的一个重要方面。此外,我们发现过量的 mTORC1
由溶酶体中胆固醇积累引起的信号传导会导致细胞功能障碍,并可能是一种驱动因素
神经退行性和代谢性疾病 Niemann-Pick C 型 (NPC) 中的力量。
这些发现直接引发了关于细胞营养传感组织的深刻问题,
是当前 MIRA 提案的核心。一项关键挑战是阐明其机制和生理学
脂质依赖性 mTORC1 调节的作用,特别是专用胆固醇传感器是否存在于
溶酶体膜,以及它们如何将大量的甾醇分子与 mTORC1 激活结合起来
细胞和有机体水平的整体代谢调节。根据我们的发现,胆固醇通过
mTORC1 涉及溶酶体和 ER 之间的物理通讯,这是该药物的另一个主要目标
提议是描绘介导细胞之间沟通和代谢物交换的机制。
溶酶体和 ER,以及该机制如何参与 mTORC1 以及另一个主要的调节
最后,mTORC1 失调在 NPC 中的致病作用,以及
mTORC1 抑制可恢复 NPC 细胞功能的多个参数,强烈支持 mTORC1 作为主要药物
神经退行性疾病的目标。因此我们将确定溶酶体 mTORC1 如何控制神经元细胞
稳态,以及 mTORC1 信号传导失调如何导致神经元变性。在一起,这些
研究将揭示健康和疾病状态下代谢组织的基本原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roberto Zoncu其他文献
Roberto Zoncu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roberto Zoncu', 18)}}的其他基金
Spatio-temporal regulation of mTORC1 signaling in normal and disease states
正常和疾病状态下 mTORC1 信号传导的时空调节
- 批准号:
10174962 - 财政年份:2019
- 资助金额:
$ 58.76万 - 项目类别:
Spatio-temporal regulation of mTORC1 signaling in normal and disease states
正常和疾病状态下 mTORC1 信号传导的时空调节
- 批准号:
10408711 - 财政年份:2019
- 资助金额:
$ 58.76万 - 项目类别:
Molecular mechanisms for lipid sensing by mTORC1
mTORC1 脂质传感的分子机制
- 批准号:
10393506 - 财政年份:2019
- 资助金额:
$ 58.76万 - 项目类别:
ENGINEERING ORGANELLE FUNCTION TO REWIRE CANCER CELL METABOLISM
改造细胞器功能以重新连接癌细胞代谢
- 批准号:
8756590 - 财政年份:2014
- 资助金额:
$ 58.76万 - 项目类别:
相似国自然基金
ASMase介导心肌细胞膜胆固醇稳态失衡在糖尿病心肌病中的作用及机制研究
- 批准号:82370843
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
工程化细胞膜纳米囊泡兼具屏障穿越、肿瘤靶向和免疫调控功能用于胶质瘤免疫治疗研究
- 批准号:82372106
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
膳食和红细胞膜脂肪酸水平及膜流动性与2型糖尿病发病风险的关联研究
- 批准号:82373564
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
戊型肝炎病毒衣壳蛋白与整合素αVβ1互作介导细胞膜重塑在病毒感染中的机制
- 批准号:32302863
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内皮细胞膜SNHG20-FABP5互作调控DHA脂肪酸跨血脑屏障转运促进神经血管单元损伤修复的机制
- 批准号:32371207
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Identification of Mycobacterium tuberculosis-derived metabolites acting as ligands for MR1-restricted T cells.
鉴定作为 MR1 限制性 T 细胞配体的结核分枝杆菌衍生代谢物。
- 批准号:
10667695 - 财政年份:2023
- 资助金额:
$ 58.76万 - 项目类别:
Role of Host Filamin Proteins in Regulating Filovirus Entry and Egress
宿主细丝蛋白在调节丝状病毒进入和排出中的作用
- 批准号:
10644499 - 财政年份:2023
- 资助金额:
$ 58.76万 - 项目类别:
Innate immune regulation of lung inflammation through mitochondrial dynamics
通过线粒体动力学调节肺部炎症的先天免疫
- 批准号:
10659953 - 财政年份:2023
- 资助金额:
$ 58.76万 - 项目类别:
Partial and Controlled Depletion of SR Calcium by RyR Agonists Prevents Calcium-dependent Arrhythmias
RyR 激动剂部分且受控地消耗 SR 钙可预防钙依赖性心律失常
- 批准号:
10577630 - 财政年份:2023
- 资助金额:
$ 58.76万 - 项目类别:
Lung epithelial cell reprogramming by CD4 T cells
CD4 T 细胞对肺上皮细胞进行重编程
- 批准号:
10747632 - 财政年份:2023
- 资助金额:
$ 58.76万 - 项目类别: