Decoding dynamic interplay between signaling and membranes in chemotaxis by molecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
基本信息
- 批准号:10623376
- 负责人:
- 金额:$ 65.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-04 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsArthritisBackBiochemical ReactionBiological ProcessCell membraneCharacteristicsChemotactic FactorsChemotaxisCytoskeletonDevelopmentDiseaseDisease ProgressionEmbryonic DevelopmentEventExhibitsFeedbackFilopodiaGoalsImpairmentLinkLogicMalignant NeoplasmsMechanicsMembraneMolecularMonomeric GTP-Binding ProteinsMorphologyNatural regenerationNeoplasm MetastasisNuclear EnvelopePIK3CG genePathologicPhasePhenotypePhysical condensationPhysiologicalPropertyProteinsPublic HealthReceptor Protein-Tyrosine KinasesSeriesSignal TransductionTechniquesTissuesTractionangiogenesiscell motilityloss of functionmolecular actuatoroperationphysical propertypolarized cellrho GTP-Binding Proteinsspatiotemporaltooltranscription factorwound healing
项目摘要
Chemotaxis occurs during a number of key physiological events including angiogenesis, embryonic
development and wound healing. It also contributes to disease progression in pathological conditions such as
cancer metastasis and arthritis. The goal of the current proposal is to reveal how biochemical reactions and
physical characteristics, such as membrane curvature, deformation, and assembly phase, interact with one
another in achieving dynamic, accurate yet highly efficient cell migration. Chemotaxis has been understood
mainly in the perspective of signal transduction, while if and how physical properties of membranes play a role,
and how they interact with signal transduction remain largely unknown. By newly developing and implementing
a series of molecular actuators that can directly probe membrane properties with high spatio-temporal precision
inside lively migrating cells, we will reveal an interplay between signal transduction and membrane mechanics.
What molecular mechanisms generate local membrane curvatures developing into filopodia and
lamellipodia? In sensing chemoattractants, cells polarize by undergoing asymmetric membrane deformation
consisting of filopodia and lamellipodia at the front, and membrane retraction at the rear. We recently found that
curvature-sensitive proteins are a missing link between actin cytoskeleton and membranes. The result made us
hypothesize that actin machinery and curvature sensing and remodeling proteins, when properly modulated in a
feedback loop, are sufficient to produce desired types of membrane deformations such as lamellipodia and
filopodia. We will thus identify a particular combination of Rho GTPases, actin regulators, and BAR proteins, and
the molecular logic thereof, that are responsible for formation of filopodia and lamellipodia.
How do signaling components in migrating cells respond to membrane deformation? Migrating cells
exhibit dynamic morphological changes at plasma membranes and nuclear envelopes “as a consequence” of
cytoskeletal rearrangement regulated by signal components. To explore a possibility that membrane deformation
talks back to cytoskeletal and signal components, we will deploy molecular actuators that can directly deform
membranes. We will then quantify subsequently emerging activity of signaling components such as receptor
tyrosine kinases, PI3K, and small GTPases, as well as transcription factors such as YAP and Elk.
How does the phase-separated cytoskeletal biomolecular condensate play a role in membrane
deformation? Actin networks can undergo formation of biomolecular condensates at the plasma membrane due
to weak multivalent interactions among actin regulators. To examine the physiological importance of such phase
separation events, we will adapt molecular techniques to assemble or disassemble the condensates. These
operations will uniquely achieve gain- or loss-of function manipulations without altering an amount of the
molecular constituents; what is altered is their physical assembly status. We will characterize cell migration
phenotypes before and after deploying phase manipulations.
趋化性发生在许多关键的生理事件中,包括血管生成、胚胎发育
它还有助于病理状况下的疾病进展,例如
当前提案的目标是揭示生化反应和关节炎的关系。
物理特性,例如膜曲率、变形和组装阶段,与一个相互作用
另一个实现动态、准确且高效的趋化性的方法已被了解。
主要是从信号转导的角度来看,而膜的物理特性是否以及如何发挥作用,
通过新开发和实施,它们如何与信号转导相互作用仍然很大程度上未知。
一系列可以以高时空精度直接探测膜特性的分子致动器
在活跃的迁移细胞内,我们将揭示信号转导和膜力学之间的相互作用。
什么分子机制产生局部膜弯曲发展成丝状伪足和
片状伪足?在感应化学引诱物时,细胞通过不对称膜变形而极化
我们最近发现,由前部的丝状伪足和板状伪足组成,后部的膜回缩。
曲率敏感蛋白是肌动蛋白细胞骨架和细胞膜之间缺失的一环。
认为肌动蛋白机制和曲率传感和重塑蛋白,当在一个适当的调节
反馈回路,足以产生所需类型的膜变形,例如片状伪足和
因此,我们将鉴定 Rho GTP 酶、肌动蛋白调节剂和 BAR 蛋白的特定组合,以及
其分子逻辑,负责丝状伪足和片状伪足的形成。
迁移细胞中的信号成分如何响应迁移细胞的膜变形?
在质膜和核膜上表现出动态形态变化“作为结果”
信号成分调控细胞骨架重排探讨膜变形的可能性。
回到细胞骨架和信号组件,我们将部署可以直接变形的分子致动器
然后我们将量化随后出现的信号成分(例如受体)的活性。
酪氨酸激酶、PI3K 和小 GTP 酶,以及 YAP 和 Elk 等转录因子。
相分离的细胞骨架生物分子缩合物如何在膜中发挥作用
肌动蛋白网络可以在质膜上形成生物分子凝聚物吗?
肌动蛋白调节剂之间的弱多价相互作用来检查该阶段的生理重要性。
分离事件中,我们将采用分子技术来组装或分解凝聚物。
操作将独特地实现功能获得或丧失的操作,而无需改变数量
分子成分;它们的物理组装状态如何?
部署相位操作之前和之后的表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takanari Inoue其他文献
Takanari Inoue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takanari Inoue', 18)}}的其他基金
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10846921 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
- 批准号:
10246255 - 财政年份:2020
- 资助金额:
$ 65.99万 - 项目类别:
ActuAtor, a molecular tool for generating force in living cells
ActuAtor,一种在活细胞中产生力的分子工具
- 批准号:
10473892 - 财政年份:2020
- 资助金额:
$ 65.99万 - 项目类别:
Feedback and Crosstalk in Eukaryotic Chemotaxis- Administrative Supplement
真核趋化性中的反馈和串扰-行政补充
- 批准号:
8703909 - 财政年份:2010
- 资助金额:
$ 65.99万 - 项目类别:
相似国自然基金
NLK-FoxO1-GPX4信号轴调控软骨细胞铁死亡促进颞下颌关节骨关节炎进展的机制研究
- 批准号:82301113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TGFβ通过WWP2调控软骨稳态防治退行性骨关节炎的机制研究
- 批准号:82302038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智能控释硫化氢的脂质体水凝胶构建及其抑制骨关节炎病理性钙化的研究
- 批准号:32301116
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体动力蛋白MiD51在IL-27诱导类风湿关节炎DN2-B细胞分化扩增中的作用及机制研究
- 批准号:82302047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群失衡通过TLR4/IL-6信号通路触发膝关节骨性关节炎的发病机制研究
- 批准号:82302769
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding dynamic interplay between signaling and membranes in chemotaxis bymolecular actuators
通过分子致动器解码趋化中信号传导和膜之间的动态相互作用
- 批准号:
10846921 - 财政年份:2023
- 资助金额:
$ 65.99万 - 项目类别:
Cytoskeletal functions in cell aging and disease
细胞衰老和疾病中的细胞骨架功能
- 批准号:
10400494 - 财政年份:2016
- 资助金额:
$ 65.99万 - 项目类别:
Chemokine Receptor Studies: Defining the Dynamics of the Chemosynapse
趋化因子受体研究:定义趋化突触的动力学
- 批准号:
7915941 - 财政年份:2009
- 资助金额:
$ 65.99万 - 项目类别: