Filtered Point Process Inference Framework for Modeling Neural Data
用于神经数据建模的过滤点过程推理框架
基本信息
- 批准号:9170395
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adrenal GlandsAlgorithmsAnimalsArchitectureBasic ScienceBehavioralBiological ProcessBrainCalciumCentral obesityClinicalCodeCollaborationsCommunitiesComplexComputer softwareConfidence IntervalsCorticotropinCoupledCushing SyndromeDataData AnalysesDiabetes MellitusDifferential EquationDiseaseEndocrine systemEtiologyEventFunctional disorderGoalsGonadal Steroid HormonesHormonalHormonesHumanHydrocortisoneImageInsulinInterventionLeast-Squares AnalysisLifeLightLinear ModelsLinkMachine LearningMeasurementMedicalMemoryMethodologyMethodsModelingMorphologic artifactsMusNatureNeuraxisNeuronsNeurosciencesNeurosciences ResearchNeurosecretory SystemsNoiseOsteoporosisParietal LobePhysiologic pulsePhysiologyPituitary GlandPopulationPopulation AnalysisProceduresProcessRecoveryResearchResolutionRodentSeriesSerumSignal TransductionSoftware ToolsSomatotropinStatistical MethodsStatistical ModelsStimulusStructureSystemTechniquesTestingThyroid HormonesTimeTime Series AnalysisTissuesTrainingUnited States National Institutes of HealthV1 neuronVisualVisual Perceptionarea striataawakebasecomputational neurosciencecomputerized data processingdesigndrug efficacydynamic systemhuman dataimprovedin vivomathematical algorithmmovieneural modelnovelopen sourcerelating to nervous systemresearch studysignal processingspatiotemporaltemporal measurementtooltwo-photonvisual cognitionvisual motor
项目摘要
ABSTRACT
Neuronal spike-trains and various other signals in the central nervous system have a discrete,
impulsive nature that is well characterized with point process statistical models. In several neuroscience
applications, such impulsive signals are transformed upon interaction with biological processes or
measurement artifacts, and are consequently observed as filtered point process data. The goal of this project
is to develop a principled statistical signal processing framework for filtered point processes with models and
algorithms for estimation and inference, and to apply these novel methodologies to experimental data from
rodent brain calcium imaging data and human neuroendocrine data. Our approach centers on a unified
framework for sparse representation and dynamical systems modeling of marked point process data arising in
neuroscience analyses. In addition to its novel statistical methodology, another major strength of our proposal
is the application of these methods to experimental data arising in fundamental neuroscience and clinical
problems, both to validate the new methods with real data and to investigate basic science questions related to
the central nervous system structural and functional organization. Large-scale two-photon calcium imaging, in
conjunction with spike-train deconvolution, will allow us to study the activity of over a thousand identified
neurons simultaneously with single-spike resolution in a behaving animal. This will allow us to elucidate with
high accuracy how the magnitude and spatial structure of signal and noise correlations across neurons vary
with stimuli or behavioral tasks. It will shed light on visual encoding in the rodent brain, and neuronal
architectures underlying visual perception and cognition, at an unprecedented spatiotemporal scale. Further,
our modeling of pulsatile hormone secretion will apply to the release of cortisol, gonadal steroids, insulin,
thyroid and growth hormones. Diseases linked to abnormal cortisol secretion include diabetes, visceral obesity
and osteoporosis, disturbed memory formation and life-threatening Addisonian crisis. Hence, understanding
and modeling the underlying impulsive nature of normal hormone release will aid our understanding of
pathological neuroendocrine states and improve the efficacy of drugs and other interventions for treatment of
hormonal disorders. Additionally, this project will combine Brown Lab’s computational expertise in point
process models with Sur Lab’s experimental expertise in neuronal calcium imaging, extending our ongoing
collaboration under the NIH Brain Initiative to developing novel neural population analysis techniques with
unprecedented detail at single-neuron, single-spike resolution. Our research is well poised to improve
significantly the state of the art and in computational and systems neuroscience tools and bridge together
components from the statistical learning, signal processing and computational neuroscience communities to
produce a unifying analytical framework for neural data analysis.
抽象的
中心神经系统中的神经元尖峰训练和其他各种信号具有离散的,
在几种神经科学中,脉络过程统计模型的脉冲性质都很好
应用,这种冲动信号在与生物过程相互作用或
测量伪像,因此被观察到该项目的尖锐过程数据。
是通过模型和
用于估计和推理的算法,并将这些甲基甲化学应用于来自
啮齿动物脑钙成像数据和人类神经内分泌数据。
用于稀疏压抑和动态系统建模的框架,该模型在
神经科学分析。
这些方法是在基本神经科学和临床中产生的实验数据的应用
问题,既可以通过真实数据来验证新方法,又要调查与
中心神经系统结构和功能组织。
与尖峰训练反卷积的结合将使我们能够研究一千多个鉴定的活动
神经元同时与行为动物中的单个尖峰分辨率。
高准确性的神经元信号和噪声相关性的幅度和空间结构如何变化
使用刺激或行为任务。
视觉渗透和认知为基础的结构,以未经预言的时空尺度。
我们对脉冲激素分泌的建模将使皮质醇,性腺类固醇,胰岛素,胰岛素的释放。
甲状腺和生长激素与异常皮质醇分泌有关的疾病包括糖尿病
以及骨质疏松症,记忆形成干扰和威胁生命的加法危机。
并建模正常激素释放的潜在冲动性质将有助于我们的理解
病理神经内分泌状态并提高药物的功效和其他干预措施
荷尔蒙障碍。
具有SUR LAB在神经元钙成像方面的经验专业知识的过程模型,扩展了我们正在进行的
在NIH大脑倡议下的合作与开发新型神经个人事分析技术与
单神经元的未经预言的细节,我们的研究旨在改善我们的研究。
显着的艺术状态和计算机系统神经科学工具并桥接在一起
来自统计学习,信号处理和计算神经科学社区的组成部分
为神经数据分析产生厌食的分析框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EMERY N BROWN其他文献
EMERY N BROWN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EMERY N BROWN', 18)}}的其他基金
Investigating the neurophysiological basis of circuit-specific laminar rs-fMRI
研究电路特异性层流 rs-fMRI 的神经生理学基础
- 批准号:
10518479 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Non-Human Primate Model for Developing Closed-Loop Anesthesia Delivery Systems
用于开发闭环麻醉输送系统的非人类灵长类动物模型
- 批准号:
10610946 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Non-Human Primate Model for Developing Closed-Loop Anesthesia Delivery Systems
用于开发闭环麻醉输送系统的非人类灵长类动物模型
- 批准号:
10445654 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Integrated Systems Neuroscience Studies of Anaesthesia
麻醉的综合系统神经科学研究
- 批准号:
10093061 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
The Aging Brain Under General Anesthesia: Neurophysiology, Neuroimaging Biomarkers of Aging and Alzheimer's Disease, and Post-Operative Cognitive Outcomes
全身麻醉下老化的大脑:神经生理学、衰老和阿尔茨海默病的神经影像生物标志物以及术后认知结果
- 批准号:
9904463 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Integrated Systems Neuroscience Studies of Anaesthesia
麻醉的综合系统神经科学研究
- 批准号:
9209574 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
相似国自然基金
加速器磁铁励磁电源扰动物理机制和观测抑制算法的研究
- 批准号:12305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向移动物联网的高效数据查询机制与算法研究
- 批准号:62072402
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
考虑充电站选址和容量限制的电动物流车辆路径问题研究
- 批准号:71901177
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
面向小动物模型的功能PAT多生理参数定量成像方法
- 批准号:61901342
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondrial regulation of stress reactivity in humans
人类应激反应的线粒体调节
- 批准号:
10392915 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Organismal and Genetic Networks in Drug Reward and Reinforcement
药物奖励和强化中的有机体和遗传网络
- 批准号:
7583059 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Organismal and Genetic Networks in Drug Reward and Reinforcement
药物奖励和强化中的有机体和遗传网络
- 批准号:
7894894 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Organismal, Cellular, and Genetic Networks in Anxiety and Depression
焦虑和抑郁中的有机体、细胞和遗传网络
- 批准号:
7211672 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
A Systems Neuroscience Approach for the Study of General Anesthesia
用于研究全身麻醉的系统神经科学方法
- 批准号:
7341416 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别: