Continuous Evolution of Proteins with Novel Therapeutic Potential
具有新治疗潜力的蛋白质的不断进化
基本信息
- 批准号:8962813
- 负责人:
- 金额:$ 45.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-04-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBacteriophagesBindingCRISPR/Cas technologyCellsCleaved cellClinicalClinical TrialsDNADNA-Directed RNA PolymeraseDevelopmentDirected Molecular EvolutionDiseaseDrug resistanceEnzymesEvolutionGene ProteinsGene StructureGenesGenomeGenome engineeringGenomicsGrantGuide RNAHealthHepatitis C virusHereditary DiseaseHumanHuman GeneticsHuman GenomeInterventionLaboratoriesMammalian CellMediatingMessenger RNAMethodsNaturePeptide HydrolasesPropertyProtease InhibitorProteinsProteomeResearch PersonnelResistanceSiteSpecificitySpeedSystemTNF geneTherapeuticTherapeutic AgentsTimeVariantVisiondrug candidategene producthuman diseaseinterestmacromoleculenext generationnovel strategiesnovel therapeuticsnucleasepromoterrecombinasesmall moleculesuccesstherapeutic protein
项目摘要
DESCRIPTION (provided by applicant): The vast majority of current therapeutic agents function by binding to disease-associated macromolecules and modulating their activity. Recent developments, however, have made increasingly realistic the possibility of developing next-generation therapeutics that do not simply bind targets implicated in disease, but instead alter the covalent structure of genes and gene products in ways that can more effectively treat-or even cure-many diseases. While the possibility of precisely manipulating genes and proteins in mammalian cells and, eventually, in humans, has enormous potential, several major challenges must be overcome to fully realize this vision. Perhaps the most significant of these challenges is the efficient creation of the macromolecules that are needed to alter genomes or proteomes with a high degree of selectivity and potency. To realize a vision in which arbitrary genes or proteins can be manipulated in mammalian cells to treat disease thus requires new approaches to rapidly generating macromolecules with precise, tailor-made properties. During the last granting period, we developed a system that enables proteins to evolve continuously in the laboratory, requiring virtually no researcher intervention. The resulting system, phage-assisted continuous evolution (PACE), allows proteins to undergo directed evolution at a rate ~100-fold faster than conventional methods. In the first applications of PACE, we rapidly evolved RNA polymerases with dramatically different DNA promoter specificities. We also identified the vulnerabilities of drug candidates to the evolution of drug resistance by using PACE to evolve proteases that are resistant to HCV protease inhibitors currently used in human clinical trials. In addition, we developed important PACE capabilities beyond basic positive selection, including small- molecule modulation of selection stringency and negative selection against undesired activities. These initial studies established PACE as a robust and general platform to evolve proteins with tailor-made properties at an unprecedented speed. In the next granting period, we propose to apply these developments to continuously evolve four classes of proteins or RNAs, each with the ability to manipulate the covalent structure of genes or gene products, and each with potential relevance to the development of next-generation human therapeutics: recombinase enzymes that insert DNA of interest into safe-harbor loci in the human genome, proteases that specifically cleave disease- associated proteins, orthogonal Cas9 (CRISPR) nucleases with altered PAM specificities and enhanced activities, and "smart" Cas9 guide RNAs that mediate genome engineering only in those cells that are in specific disease-associated cell states. Success would establish the novel therapeutic potential of these proteins and RNAs to address a wide range of human diseases, including many human genetic disorders.
描述(由申请人提供):目前绝大多数治疗剂通过与疾病相关的大分子结合并调节其活性来发挥作用,然而,最近的发展使得开发不仅仅结合靶点的下一代疗法的可能性变得越来越现实。与疾病有关,而是以更有效地治疗甚至治愈许多疾病的方式改变基因和基因产物的共价结构,而精确操纵哺乳动物细胞以及最终人类中的基因和蛋白质的可能性已经存在。巨大的为了充分实现这一愿景,必须克服几个主要挑战,也许这些挑战中最重要的是创建具有高度选择性和效力的改变基因组或蛋白质组所需的大分子。可以在哺乳动物细胞中操纵任意基因或蛋白质来治疗疾病,因此需要新的方法来快速生成具有精确、定制特性的大分子。几乎没有研究人员由此产生的系统,即噬菌体辅助连续进化(PACE),使蛋白质能够以比传统方法快约 100 倍的速度进行定向进化。在 PACE 的首次应用中,我们快速进化出具有显着不同的 DNA 启动子的 RNA 聚合酶。我们还通过使用 PACE 进化出对目前用于人体临床试验的 HCV 蛋白酶抑制剂具有抗药性的蛋白酶,确定了候选药物对耐药性进化的脆弱性。此外,我们还开发了超越基本的 PACE 功能。正选择,包括选择严格性的小分子调节和针对不良活动的负选择,这些初步研究将 PACE 建立为一个强大且通用的平台,以前所未有的速度进化具有定制特性的蛋白质。应用这些发展来不断进化四类蛋白质或RNA,每一种都具有操纵基因或基因产物的共价结构的能力,并且每一种都与下一代人类疗法的开发具有潜在的相关性:插入DNA的重组酶感兴趣人类基因组中的安全港位点、特异性切割疾病相关蛋白的蛋白酶、具有改变的 PAM 特异性和增强活性的正交 Cas9 (CRISPR) 核酸酶,以及仅在特定细胞中介导基因组工程的“智能”Cas9 引导 RNA特定疾病相关的细胞状态的成功将确立这些蛋白质和 RNA 的新治疗潜力,以解决广泛的人类疾病,包括许多人类遗传性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID R LIU其他文献
DAVID R LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID R LIU', 18)}}的其他基金
Project 3: Therapeutic Gene Editing for Huntington's Disease
项目3:亨廷顿病的治疗性基因编辑
- 批准号:
10668769 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Base editing and prime editing for sickle cell disease
镰状细胞病的碱基编辑和引物编辑
- 批准号:
10157511 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
Continuous Evolution of Proteins with Novel Therapeutic Potential
具有新治疗潜力的蛋白质的不断进化
- 批准号:
10181559 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
Base editing and prime editing for sickle cell disease
镰状细胞病的碱基编辑和引物编辑
- 批准号:
10323054 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
Base editing and prime editing for sickle cell disease
镰状细胞病的碱基编辑和引物编辑
- 批准号:
10579903 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
Continuous Evolution of Proteins with Novel Therapeutic Potential
具有新治疗潜力的蛋白质的不断进化
- 批准号:
10588186 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
Continuous Evolution of Proteins with Novel Therapeutic Potential
具有新治疗潜力的蛋白质的不断进化
- 批准号:
10393666 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
PedGeneRx - Admin Supplement to Base Editing and Prime Editing for Sickle Cell Disease R01
PedGeneRx - 镰状细胞病 R01 碱基编辑和 Prime 编辑的管理补充
- 批准号:
10594247 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
相似国自然基金
受体结合蛋白关键位点突变强化噬菌体抑菌性能的分子机制研究
- 批准号:32360629
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
噬菌体展示噻唑肽库的构建及基于TIGIT蛋白筛选噻唑类的多肽活性分子
- 批准号:22307149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
φRAP44-like前噬菌体二元系统SieZ/SieW调控鸭疫里默氏杆菌逃逸噬菌体裂解的分子机制
- 批准号:32373060
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Lambda噬菌体尾部组装及侵染机制研究
- 批准号:32371254
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
P7型噬菌体-质粒介导黏菌素耐药mcr-3基因转移机制研究
- 批准号:32302925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 45.15万 - 项目类别:
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
DRUG DISCOVERY BY DIRECTED EVOLUTION IN MAMMALIAN CELLS
通过哺乳动物细胞定向进化发现药物
- 批准号:
10644749 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Developing an integrated pipeline for routine generation of orthogonal GPCR-targeting nanobodies
开发用于常规生成正交 GPCR 靶向纳米抗体的集成管道
- 批准号:
10603669 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Spacer acquisition during the type III-A CRISPR-Cas immune response
III-A 型 CRISPR-Cas 免疫反应期间间隔区的获取
- 批准号:
10638980 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别: