Learning diagnostic latent representations for human material perception: common mechanisms and individual variability
学习人类物质感知的诊断潜在表征:共同机制和个体差异
基本信息
- 批准号:10580295
- 负责人:
- 金额:$ 42.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAffectAmericanAppearanceArtificial IntelligenceBiologicalCategoriesClassificationCognitionCollaborationsColorComputersCuesDataData SetDentalDiagnosticDiagnostic ImagingDimensionsDiscriminationEmerging TechnologiesEnvironmentEstheticsEvolutionFoodFood SelectionsFruitGeometryGlassGoalsHumanHuman Subject ResearchImageIndividualIndividual DifferencesJudgmentLabelLearningLightingMachine LearningMeasuresMeatMentorshipMethodsModelingNeurosciencesOcular ProsthesisOperative Surgical ProceduresOutcomePaperPerceptionPersonsProcessPropertyPsychophysicsPublishingQuality of lifeResearchRoleSemanticsShapesSkinStructureStudentsSurfaceSurface PropertiesTestingTextureTrainingUniversitiesVariantVisionVisualVisual SystemVisual impairmentWalkingWaxesWorkcomputer sciencedeep learningdeep neural networkeducational atmosphereexperiencefallsgenerative adversarial networkgraduate studentgrasphuman subjectimage processingindividual variationinter-individual variationmultidisciplinarymultisensoryneural correlatenovelnovel strategiesobject recognitionpeerphysical propertypreventprogramspublic health relevancerecruitstatistical learningstatisticstooltraining opportunityundergraduate studentunsupervised learningvisual processing
项目摘要
Abstract
Visually discriminating and identifying materials (such as judging whether a cup is made of plastic or glass)
is crucial for everyday tasks, such as walking on different surfaces, using tools, and selecting food; and yet
material perception remains poorly understood. The main challenge is that a given material can take an enormous
variety of appearances depending on the 3D shape, lighting, and object class, and humans must untangle these
to achieve perceptual constancy. Previous research revealed useful image cues and found that 3D geometry
interacts with the material perception in intricate ways. The discovered image cues, however, do not generalize
across materials and scenes. The proposed work will combine unsupervised generative models with human
psychophysics to identify a representation that can disentangle physical properties and discover diagnostic image
features without labeled image data. The specific Aim 1 is to identify a latent representation that predicts human
material discrimination, using unsupervised deep neural networks trained with computer rendered images. The
specific Aim 2 is to characterize high-level semantic material perception, the effects of high-level recognition as
well as individual differences on attribute rating and recognition tasks. To discover a representation of real-world
materials, the PI and the team will train a unsupervised style-based Generative Adversarial Network (StyleGAN)
on real-world photographs. The preliminary results show that StyleGAN can generate realistic and diverse images
of materials. Collectively, these studies will explore how the semantic-level material perception process relates
to the statistical structure of the natural environment learned from unsupervised models. The proposed work will
also uncover the task-dependent interplay between high-level vision and mid-level representations, and provide
guidance for seeking neural correlates of material perception. The methods developed in this proposal, such
as discovering perceptual dimensions with limited human labeled data and characterizing individual variability,
have impact for other research in cognition. The AREA proposal provides a unique multidisciplinary training
opportunity to engage diverse undergraduate students at American University in the research of psychophysics,
machine learning, and image processing. The PI and students will also investigate a novel method of recruiting
under-represented human subjects using "peer-recruiting." Finally, the expected findings of this proposal will have
implications for the long-standing debate about the degree to which perceptual representations are predetermined
by evolution or learned via experience.
抽象的
视觉辨别和识别材质(例如判断杯子是塑料的还是玻璃的)
对于日常任务至关重要,例如在不同的表面上行走、使用工具和选择食物;
物质感知仍然知之甚少,主要的挑战是给定的材料可能需要巨大的影响。
各种外观取决于 3D 形状、照明和对象类别,人类必须理清这些
先前的研究揭示了有用的图像线索并发现 3D 几何形状。
然而,所发现的图像线索并不能一概而论。
拟议的工作将把无监督生成模型与人类结合起来。
心理物理学来识别可以解开物理特性并发现诊断图像的表示
没有标记图像数据的特征具体目标 1 是识别预测人类的潜在表示。
材料歧视,使用由计算机监督渲染图像训练的无监督深度神经网络。
具体目标 2 是表征高级语义材料感知,高级识别的效果为
以及属性评级和识别任务上的个体差异,以发现现实世界的表示。
材料、PI 和团队将训练一个无监督的基于风格的生成对抗网络(StyleGAN)
初步结果表明 StyleGAN 可以生成逼真且多样化的图像。
总的来说,这些研究将探讨语义层面的材料感知过程如何相互关联。
所提出的工作将是从无监督模型中学习到的自然环境的统计结构。
还揭示了高层视觉和中层表征之间依赖于任务的相互作用,并提供
本提案中开发的方法,例如寻找物质感知的神经关联的指导。
用有限的人类标记数据发现感知维度并表征个体差异,
对其他认知研究产生影响 AREA 提案提供了独特的多学科培训。
让美国大学的不同本科生参与心理物理学研究的机会,
机器学习和图像处理 PI 和学生还将研究一种新的招募方法。
最后,该提案的预期结果将是:
对关于感知表征在多大程度上预先确定的长期争论的影响
通过进化或通过经验学习。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unsupervised learning reveals interpretable latent representations for translucency perception.
无监督学习揭示了半透明感知的可解释的潜在表征。
- DOI:
- 发表时间:2023-02
- 期刊:
- 影响因子:4.3
- 作者:Liao, Chenxi;Sawayama, Masataka;Xiao, Bei
- 通讯作者:Xiao, Bei
Probing the Link Between Vision and Language in Material Perception.
探索物质感知中视觉与语言之间的联系。
- DOI:
- 发表时间:2024-02-05
- 期刊:
- 影响因子:0
- 作者:Liao, Chenxi;Sawayama, Masataka;Xiao, Bei
- 通讯作者:Xiao, Bei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bei Xiao其他文献
Bei Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于3D生物打印仿生NAFLD模型探究细胞外基质硬度对脂质沉积的影响及机制
- 批准号:82300754
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
本征缺陷对3D打印连续碳纤维增强复合材料失效行为的影响机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
砂型3D打印头全耦合动力学与微滴喷射机理及成形质量影响机制研究
- 批准号:12232013
- 批准年份:2022
- 资助金额:300 万元
- 项目类别:重点项目
3D打印Fe-Ga合金的磁各向异性和沉淀相析出调控对磁弹性能的影响
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Development of a Collagen-based 3D Bioprinted Microfluidic Platform for Vascular Tissue Engineering and Disease Modeling
开发基于胶原蛋白的 3D 生物打印微流体平台,用于血管组织工程和疾病建模
- 批准号:
10837289 - 财政年份:2023
- 资助金额:
$ 42.05万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 42.05万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 42.05万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 42.05万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 42.05万 - 项目类别: