Quiet TMS: A Low-Acoustic-Noise Transcranial Magnetic Stimulation System
安静 TMS:低声学噪声经颅磁刺激系统
基本信息
- 批准号:9229084
- 负责人:
- 金额:$ 35.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-26 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acoustic StimulationAcousticsAddressAffectAgingAreaArousalAuditoryAuditory areaBasic ScienceBiological Neural NetworksBrainBrain StemBrain regionCharacteristicsChildClinical ResearchDataDevelopmentDevicesEarplugEffectivenessElderlyElectroencephalographyElectromagnetic EnergyElectromagneticsElectronicsFDA approvedFetusFrequenciesFunctional Magnetic Resonance ImagingGenerationsHeadacheHearingHumanIndividualLoudnessMagnetismMeasurementMechanicsMediatingMental DepressionMethodsNeurologicNeuronsNeurosciencesNoisePatientsPerformancePhysiologic pulsePositron-Emission TomographyPreventionPropertyProtocols documentationRiskSafetyShapesSiteStructureSystemTechniquesTechnologyTherapeuticTinnitusTranscranial magnetic stimulationVulnerable Populationsbaseclinical applicationdesignelectric fieldhearing impairmenthuman studynervous system disorderneural stimulationneuroregulationnovelpreventprototyperelating to nervous systemrepetitive transcranial magnetic stimulationresponsescale upsoundtoolvoltage
项目摘要
This project will develop a low-noise transcranial magnetic stimulation (TMS) system. TMS is a technique
for non-invasive brain stimulation using strong, brief magnetic pulses. TMS is widely used as a tool for probing
brain function and is an FDA approved treatment for depression. A significant limitation of TMS, however, is
that the magnetic pulse delivery is associated with a loud clicking sound as high as 140 dB resulting from
electromagnetic forces. The loud noise significantly impedes both basic research and clinical applications of
TMS. First, it effectively makes TMS less focal since every click activates auditory cortex, brainstem, and other
connected regions, synchronously with the magnetic pulse. Second, the repetitive clicking sound, both by itself
or paired with synchronous activation at the TMS target site, can induce neuromodulation that can interfere
with and confound the intended effects at the TMS target. Third, the clicking noise can compromise blinding of
TMS studies and necessitates the use of sham conditions that replicate the sound but that could induce
undesirable sound-mediated modulation effects as well. Finally, there are known safety concerns regarding
hearing loss and induction of tinnitus, especially in vulnerable populations, as well as tolerability
considerations, since TMS noise may contribute to headache and cause discomfort in some patients.
Addressing this need, we propose a quiet TMS (qTMS) device that incorporates two key concepts: First,
the dominant frequency of the TMS pulse sound (typically 2–5 kHz) will be shifted to higher frequencies that
are above the human hearing upper threshold of about 20 kHz. This will be accomplished by making the
magnetic pulse ultrabrief, and shaping it so that its fundamental frequency is above 20 kHz. Due to the
strength–duration properties of the neural response, ultrabrief pulses require higher amplitude to achieve
neural stimulation, but the total pulse energy is actually lower than for conventional pulses. Second, the TMS
coil will be redesigned electrically and mechanically to generate suprathreshold electric field pulses while
minimizing the sound emitted at audible frequencies (< 20 kHz). This will require the coil to sustain pulses with
higher voltage and current but of briefer duration than conventional pulses, while minimizing the
electromagnetic energy that is converted to and emitted as acoustic energy at frequencies below 20 kHz. The
enhanced acoustic properties of the coil will be accomplished with a novel, layered coil design. We will design
and build a qTMS device based on these concepts, aiming at an initial reduction of the acoustic noise of 40 dB
compared to a conventional device. The neural and acoustic stimulation produced by qTMS will be
characterized in bench-top measurements and a proof-of-concept human study. We present pilot data from a
low-amplitude qTMS prototype already demonstrating reduction of noise by 19 dB with ultrabrief pulses, as
well as data from a human study showing comparable neural activation with amplitude-adjusted brief versus
long pulses. Thus, qTMS technology could enable more precise, effective, safe, and tolerable TMS.
该项目将开发低噪声trancranial磁刺激(TMS)系统。 TMS是一项技术
用于使用强,短磁脉冲的非侵入性脑刺激。 TMS被广泛用作探测工具
大脑功能,是FDA批准的抑郁症治疗方法。但是,TMS的一个重要局限性是
磁性脉冲传递与高达140 dB的响亮声音有关
电磁力。大声的噪音极大地阻碍了基础研究和临床应用
TMS。首先,由于每次点击都会激活听觉皮层,脑干和其他
连接区域,与磁脉冲同步。其次,重复的点击声本身
或与TMS目标位点的同步激活配对,可以诱导神经调节
与TMS目标处的预期效果并混淆。第三,点击噪声会损害盲目
TMS研究并有必要使用复制声音的假条件,但可能会引起声音
不良的声音介导的调制效果。最后,关于安全的问题
耳鸣的听力损失和诱导,尤其是在弱势群体中以及可容忍度
考虑因素,由于TMS噪声可能会导致标题并引起某些患者的不适。
在满足这种需求时,我们提出了一个安静的TMS(QTMS)设备,该设备结合了两个关键概念:首先,
TMS脉冲声音的主要频率(通常为2-5 kHz)将转移到更高的频率
高于人类听力的上阈值约为20 kHz。这将通过使
磁性脉冲超信,并将其塑造,使其基本频率高于20 kHz。由于
神经响应的强度 - 呈呈呈呈粘合性,超纤维脉冲需要更高的放大器才能实现
神经刺激,但总脉冲能量实际上低于常规脉冲。第二,TMS
线圈将通过电气和机械重新设计,以产生上孔质电场脉冲,而
最大程度地减少在可听见的频率下发出的声音(<20 kHz)。这将要求线圈与
比常规脉冲更高的电压和电流,但布里夫持续时间更高,同时最小化
电磁能以低于20 kHz的频率转化为声能并发射为声能。这
线圈的增强声学特性将通过一种新型的分层线圈设计来实现。我们将设计
并基于这些概念构建QTMS设备,目的是初步降低40 dB的声学噪声
与常规设备相比。 QTM产生的神经和声学刺激将是
以台式测量和概念验证人类研究为特征。我们从一个
低振幅QTMS原型已经证明了用超纤维脉冲减少19 dB的噪声,AS
以及一项人类研究的数据,显示了与放大器调整后的简短相比的神经激活
长脉冲。那就是QTMS技术可以使更精确,有效,安全和可容忍的TMS。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angel V Peterchev其他文献
Angel V Peterchev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angel V Peterchev', 18)}}的其他基金
Biology and Biophysics of the Cortical Response to Transcranial Magnetic Stimulation
皮质对经颅磁刺激反应的生物学和生物物理学
- 批准号:
10264793 - 财政年份:2020
- 资助金额:
$ 35.1万 - 项目类别:
Biology and Biophysics of the Cortical Response to Transcranial Magnetic Stimulation
皮质对经颅磁刺激反应的生物学和生物物理学
- 批准号:
10458110 - 财政年份:2020
- 资助金额:
$ 35.1万 - 项目类别:
Biology and Biophysics of the Cortical Response to Transcranial Magnetic Stimulation
皮质对经颅磁刺激反应的生物学和生物物理学
- 批准号:
10031284 - 财政年份:2020
- 资助金额:
$ 35.1万 - 项目类别:
Biology and Biophysics of the Cortical Response to Transcranial Magnetic Stimulation
皮质对经颅磁刺激反应的生物学和生物物理学
- 批准号:
10657488 - 财政年份:2020
- 资助金额:
$ 35.1万 - 项目类别:
Quiet TMS: A Low-Acoustic-Noise Transcranial Magnetic Stimulation System
安静 TMS:低声学噪声经颅磁刺激系统
- 批准号:
9357667 - 财政年份:2016
- 资助金额:
$ 35.1万 - 项目类别:
Development of a Novel TMS Device with Controllable Pulse Shape (cTMS)
开发具有可控脉冲形状 (cTMS) 的新型 TMS 设备
- 批准号:
7314055 - 财政年份:2007
- 资助金额:
$ 35.1万 - 项目类别:
Development of a Novel TMS Device with Controllable Pulse Shape (cTMS)
开发具有可控脉冲形状 (cTMS) 的新型 TMS 设备
- 批准号:
7477069 - 财政年份:2007
- 资助金额:
$ 35.1万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 35.1万 - 项目类别:
Multimodal Musical Stimulation for Healthy Neurocognitive Aging
多模式音乐刺激促进健康的神经认知衰老
- 批准号:
10351738 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Gamma-Music Based Intervention for Mild Alzheimer's Disease
基于伽玛音乐的轻度阿尔茨海默病干预
- 批准号:
10502921 - 财政年份:2022
- 资助金额:
$ 35.1万 - 项目类别:
Enhancement of tumor radiation response by ultrasound-driven nanobubble stimulation
超声驱动纳米气泡刺激增强肿瘤放射反应
- 批准号:
10468225 - 财政年份:2021
- 资助金额:
$ 35.1万 - 项目类别:
Supplement: Active and Nonlinear Models for Cochlear Mechanics
补充:耳蜗力学的主动和非线性模型
- 批准号:
10405710 - 财政年份:2021
- 资助金额:
$ 35.1万 - 项目类别: